ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1le3 GIF version

Theorem 1le3 9064
Description: 1 is less than or equal to 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1le3 1 ≤ 3

Proof of Theorem 1le3
StepHypRef Expression
1 1re 7894 . 2 1 ∈ ℝ
2 3re 8927 . 2 3 ∈ ℝ
3 1lt3 9024 . 2 1 < 3
41, 2, 3ltleii 7997 1 1 ≤ 3
Colors of variables: wff set class
Syntax hints:   class class class wbr 3981  1c1 7750  cle 7930  3c3 8905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-addass 7851  ax-i2m1 7854  ax-0lt1 7855  ax-0id 7857  ax-rnegex 7858  ax-pre-ltirr 7861  ax-pre-lttrn 7863  ax-pre-ltadd 7865
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-xp 4609  df-cnv 4611  df-iota 5152  df-fv 5195  df-ov 5844  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-2 8912  df-3 8913
This theorem is referenced by:  eluzge3nn  9506  fz0to3un2pr  10054  4fvwrd4  10071  sin01gt0  11698
  Copyright terms: Public domain W3C validator