| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | GIF version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| ltlei.1 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| ltleii | ⊢ 𝐴 ≤ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 4 | 2, 3 | ltlei 8156 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 class class class wbr 4043 ℝcr 7906 < clt 8089 ≤ cle 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-pre-ltirr 8019 ax-pre-lttrn 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 |
| This theorem is referenced by: 0le1 8536 1le2 9227 1le3 9230 halfge0 9235 decleh 9520 eluz4eluz2 9670 uzuzle23 9674 fz0to4untppr 10228 fzo0to42pr 10330 xnn0nnen 10563 4bc2eq6 10900 resqrexlemga 11253 sqrt9 11278 sqrt2gt1lt2 11279 sqrtpclii 11360 0.999... 11751 ef01bndlem 11986 sin01bnd 11987 cos01bnd 11988 cos2bnd 11990 cos12dec 11998 flodddiv4 12166 strleun 12855 dveflem 15116 sinhalfpilem 15181 sincosq1lem 15215 sincos4thpi 15230 sincos6thpi 15232 pigt3 15234 pige3 15235 cosq34lt1 15240 cos02pilt1 15241 cos0pilt1 15242 rpabscxpbnd 15330 2logb9irr 15361 2logb9irrap 15367 lgsdir2lem1 15423 ex-fl 15525 ex-gcd 15531 |
| Copyright terms: Public domain | W3C validator |