| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | GIF version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| ltlei.1 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| ltleii | ⊢ 𝐴 ≤ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 4 | 2, 3 | ltlei 8244 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: 0le1 8624 1le2 9315 1le3 9318 halfge0 9323 decleh 9608 eluz4eluz2 9758 uzuzle23 9762 fz0to4untppr 10316 fzo0to42pr 10421 xnn0nnen 10654 4bc2eq6 10991 resqrexlemga 11529 sqrt9 11554 sqrt2gt1lt2 11555 sqrtpclii 11636 0.999... 12027 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos2bnd 12266 cos12dec 12274 flodddiv4 12442 strleun 13132 dveflem 15394 sinhalfpilem 15459 sincosq1lem 15493 sincos4thpi 15508 sincos6thpi 15510 pigt3 15512 pige3 15513 cosq34lt1 15518 cos02pilt1 15519 cos0pilt1 15520 rpabscxpbnd 15608 2logb9irr 15639 2logb9irrap 15645 lgsdir2lem1 15701 ex-fl 16047 ex-gcd 16053 |
| Copyright terms: Public domain | W3C validator |