| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | GIF version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| ltlei.1 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| ltleii | ⊢ 𝐴 ≤ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 4 | 2, 3 | ltlei 8147 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 ax-pre-lttrn 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 |
| This theorem is referenced by: 0le1 8527 1le2 9218 1le3 9221 halfge0 9226 decleh 9510 eluz4eluz2 9660 uzuzle23 9664 fz0to4untppr 10218 fzo0to42pr 10315 xnn0nnen 10548 4bc2eq6 10885 resqrexlemga 11207 sqrt9 11232 sqrt2gt1lt2 11233 sqrtpclii 11314 0.999... 11705 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos2bnd 11944 cos12dec 11952 flodddiv4 12120 strleun 12809 dveflem 15070 sinhalfpilem 15135 sincosq1lem 15169 sincos4thpi 15184 sincos6thpi 15186 pigt3 15188 pige3 15189 cosq34lt1 15194 cos02pilt1 15195 cos0pilt1 15196 rpabscxpbnd 15284 2logb9irr 15315 2logb9irrap 15321 lgsdir2lem1 15377 ex-fl 15479 ex-gcd 15485 |
| Copyright terms: Public domain | W3C validator |