ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleii GIF version

Theorem ltleii 8245
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
ltlei.1 𝐴 < 𝐵
Assertion
Ref Expression
ltleii 𝐴𝐵

Proof of Theorem ltleii
StepHypRef Expression
1 ltlei.1 . 2 𝐴 < 𝐵
2 lt.1 . . 3 𝐴 ∈ ℝ
3 lt.2 . . 3 𝐵 ∈ ℝ
42, 3ltlei 8244 . 2 (𝐴 < 𝐵𝐴𝐵)
51, 4ax-mp 5 1 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2200   class class class wbr 4082  cr 7994   < clt 8177  cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  0le1  8624  1le2  9315  1le3  9318  halfge0  9323  decleh  9608  eluz4eluz2  9758  uzuzle23  9762  fz0to4untppr  10316  fzo0to42pr  10421  xnn0nnen  10654  4bc2eq6  10991  resqrexlemga  11529  sqrt9  11554  sqrt2gt1lt2  11555  sqrtpclii  11636  0.999...  12027  ef01bndlem  12262  sin01bnd  12263  cos01bnd  12264  cos2bnd  12266  cos12dec  12274  flodddiv4  12442  strleun  13132  dveflem  15394  sinhalfpilem  15459  sincosq1lem  15493  sincos4thpi  15508  sincos6thpi  15510  pigt3  15512  pige3  15513  cosq34lt1  15518  cos02pilt1  15519  cos0pilt1  15520  rpabscxpbnd  15608  2logb9irr  15639  2logb9irrap  15645  lgsdir2lem1  15701  ex-fl  16047  ex-gcd  16053
  Copyright terms: Public domain W3C validator