| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | GIF version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| ltlei.1 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| ltleii | ⊢ 𝐴 ≤ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 4 | 2, 3 | ltlei 8128 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 < clt 8061 ≤ cle 8062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: 0le1 8508 1le2 9199 1le3 9202 halfge0 9207 decleh 9491 eluz4eluz2 9641 uzuzle23 9645 fz0to4untppr 10199 fzo0to42pr 10296 xnn0nnen 10529 4bc2eq6 10866 resqrexlemga 11188 sqrt9 11213 sqrt2gt1lt2 11214 sqrtpclii 11295 0.999... 11686 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos2bnd 11925 cos12dec 11933 flodddiv4 12101 strleun 12782 dveflem 14962 sinhalfpilem 15027 sincosq1lem 15061 sincos4thpi 15076 sincos6thpi 15078 pigt3 15080 pige3 15081 cosq34lt1 15086 cos02pilt1 15087 cos0pilt1 15088 rpabscxpbnd 15176 2logb9irr 15207 2logb9irrap 15213 lgsdir2lem1 15269 ex-fl 15371 ex-gcd 15377 |
| Copyright terms: Public domain | W3C validator |