![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltleii | GIF version |
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
ltlei.1 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltleii | ⊢ 𝐴 ≤ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
4 | 2, 3 | ltlei 8123 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: 0le1 8502 1le2 9193 1le3 9196 halfge0 9201 decleh 9485 eluz4eluz2 9635 uzuzle23 9639 fz0to4untppr 10193 fzo0to42pr 10290 xnn0nnen 10511 4bc2eq6 10848 resqrexlemga 11170 sqrt9 11195 sqrt2gt1lt2 11196 sqrtpclii 11277 0.999... 11667 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 cos2bnd 11906 cos12dec 11914 flodddiv4 12078 strleun 12725 dveflem 14905 sinhalfpilem 14967 sincosq1lem 15001 sincos4thpi 15016 sincos6thpi 15018 pigt3 15020 pige3 15021 cosq34lt1 15026 cos02pilt1 15027 cos0pilt1 15028 rpabscxpbnd 15114 2logb9irr 15144 2logb9irrap 15150 lgsdir2lem1 15185 ex-fl 15287 ex-gcd 15293 |
Copyright terms: Public domain | W3C validator |