![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltleii | GIF version |
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
ltlei.1 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltleii | ⊢ 𝐴 ≤ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
4 | 2, 3 | ltlei 8121 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 |
This theorem is referenced by: 0le1 8500 1le2 9190 1le3 9193 halfge0 9198 decleh 9482 eluz4eluz2 9632 uzuzle23 9636 fz0to4untppr 10190 fzo0to42pr 10287 xnn0nnen 10508 4bc2eq6 10845 resqrexlemga 11167 sqrt9 11192 sqrt2gt1lt2 11193 sqrtpclii 11274 0.999... 11664 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 cos2bnd 11903 cos12dec 11911 flodddiv4 12075 strleun 12722 cnfldstr 14049 dveflem 14872 sinhalfpilem 14926 sincosq1lem 14960 sincos4thpi 14975 sincos6thpi 14977 pigt3 14979 pige3 14980 cosq34lt1 14985 cos02pilt1 14986 cos0pilt1 14987 rpabscxpbnd 15073 2logb9irr 15103 2logb9irrap 15109 lgsdir2lem1 15144 ex-fl 15217 ex-gcd 15223 |
Copyright terms: Public domain | W3C validator |