| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltleii | GIF version | ||
| Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| ltlei.1 | ⊢ 𝐴 < 𝐵 |
| Ref | Expression |
|---|---|
| ltleii | ⊢ 𝐴 ≤ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 4 | 2, 3 | ltlei 8194 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 ≤ cle 8128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 |
| This theorem is referenced by: 0le1 8574 1le2 9265 1le3 9268 halfge0 9273 decleh 9558 eluz4eluz2 9708 uzuzle23 9712 fz0to4untppr 10266 fzo0to42pr 10371 xnn0nnen 10604 4bc2eq6 10941 resqrexlemga 11409 sqrt9 11434 sqrt2gt1lt2 11435 sqrtpclii 11516 0.999... 11907 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 cos2bnd 12146 cos12dec 12154 flodddiv4 12322 strleun 13011 dveflem 15273 sinhalfpilem 15338 sincosq1lem 15372 sincos4thpi 15387 sincos6thpi 15389 pigt3 15391 pige3 15392 cosq34lt1 15397 cos02pilt1 15398 cos0pilt1 15399 rpabscxpbnd 15487 2logb9irr 15518 2logb9irrap 15524 lgsdir2lem1 15580 ex-fl 15800 ex-gcd 15806 |
| Copyright terms: Public domain | W3C validator |