Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltleii | GIF version |
Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
ltlei.1 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltleii | ⊢ 𝐴 ≤ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltlei.1 | . 2 ⊢ 𝐴 < 𝐵 | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
4 | 2, 3 | ltlei 8021 | . 2 ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 ≤ cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: 0le1 8400 1le2 9086 1le3 9089 halfge0 9094 decleh 9377 eluz4eluz2 9526 uzuzle23 9530 fz0to4untppr 10080 fzo0to42pr 10176 4bc2eq6 10708 resqrexlemga 10987 sqrt9 11012 sqrt2gt1lt2 11013 sqrtpclii 11094 0.999... 11484 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 cos2bnd 11723 cos12dec 11730 flodddiv4 11893 strleun 12507 dveflem 13481 sinhalfpilem 13506 sincosq1lem 13540 sincos4thpi 13555 sincos6thpi 13557 pigt3 13559 pige3 13560 cosq34lt1 13565 cos02pilt1 13566 cos0pilt1 13567 rpabscxpbnd 13653 2logb9irr 13683 2logb9irrap 13689 lgsdir2lem1 13723 ex-fl 13760 ex-gcd 13766 |
Copyright terms: Public domain | W3C validator |