ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom GIF version

Theorem binom 11633
Description: The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11632. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . 6 (𝑥 = 0 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑0))
2 oveq2 5930 . . . . . . 7 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 5929 . . . . . . . . 9 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 5929 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq2d 5938 . . . . . . . . . 10 (𝑥 = 0 → (𝐴↑(𝑥𝑘)) = (𝐴↑(0 − 𝑘)))
65oveq1d 5937 . . . . . . . . 9 (𝑥 = 0 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))
73, 6oveq12d 5940 . . . . . . . 8 (𝑥 = 0 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
87adantr 276 . . . . . . 7 ((𝑥 = 0 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
92, 8sumeq12dv 11521 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
101, 9eqeq12d 2211 . . . . 5 (𝑥 = 0 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))))
1110imbi2d 230 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))))
12 oveq2 5930 . . . . . 6 (𝑥 = 𝑛 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑛))
13 oveq2 5930 . . . . . . 7 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 5929 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 5929 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq2d 5938 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑛𝑘)))
1716oveq1d 5937 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))
1814, 17oveq12d 5940 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
1918adantr 276 . . . . . . 7 ((𝑥 = 𝑛𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2013, 19sumeq12dv 11521 . . . . . 6 (𝑥 = 𝑛 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2112, 20eqeq12d 2211 . . . . 5 (𝑥 = 𝑛 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))))
2221imbi2d 230 . . . 4 (𝑥 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))))
23 oveq2 5930 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑(𝑛 + 1)))
24 oveq2 5930 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 5929 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 5929 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq2d 5938 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝐴↑(𝑥𝑘)) = (𝐴↑((𝑛 + 1) − 𝑘)))
2827oveq1d 5937 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))
2925, 28oveq12d 5940 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3029adantr 276 . . . . . . 7 ((𝑥 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3124, 30sumeq12dv 11521 . . . . . 6 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3223, 31eqeq12d 2211 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))))
3332imbi2d 230 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
34 oveq2 5930 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑁))
35 oveq2 5930 . . . . . . 7 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 5929 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 5929 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq2d 5938 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑁𝑘)))
3938oveq1d 5937 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))
4036, 39oveq12d 5940 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4140adantr 276 . . . . . . 7 ((𝑥 = 𝑁𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4235, 41sumeq12dv 11521 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4334, 42eqeq12d 2211 . . . . 5 (𝑥 = 𝑁 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
4443imbi2d 230 . . . 4 (𝑥 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))))
45 exp0 10620 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
46 exp0 10620 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
4745, 46oveqan12d 5941 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
48 1t1e1 9140 . . . . . . . 8 (1 · 1) = 1
4947, 48eqtrdi 2245 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
5049oveq2d 5938 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = (1 · 1))
5150, 48eqtrdi 2245 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = 1)
52 0z 9334 . . . . . 6 0 ∈ ℤ
53 ax-1cn 7970 . . . . . . 7 1 ∈ ℂ
5451, 53eqeltrdi 2287 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ)
55 oveq2 5930 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
56 0nn0 9261 . . . . . . . . . 10 0 ∈ ℕ0
57 bcn0 10832 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
5856, 57ax-mp 5 . . . . . . . . 9 (0C0) = 1
5955, 58eqtrdi 2245 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
60 oveq2 5930 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
61 0m0e0 9099 . . . . . . . . . . 11 (0 − 0) = 0
6260, 61eqtrdi 2245 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6362oveq2d 5938 . . . . . . . . 9 (𝑘 = 0 → (𝐴↑(0 − 𝑘)) = (𝐴↑0))
64 oveq2 5930 . . . . . . . . 9 (𝑘 = 0 → (𝐵𝑘) = (𝐵↑0))
6563, 64oveq12d 5940 . . . . . . . 8 (𝑘 = 0 → ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)) = ((𝐴↑0) · (𝐵↑0)))
6659, 65oveq12d 5940 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6766fsum1 11561 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6852, 54, 67sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
69 addcl 8002 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
7069exp0d 10744 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = 1)
7151, 68, 703eqtr4rd 2240 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
72 simprl 529 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
73 simprr 531 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
74 simpl 109 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
75 id 19 . . . . . . 7 (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
7672, 73, 74, 75binomlem 11632 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
7776exp31 364 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7877a2d 26 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7911, 22, 33, 44, 71, 78nn0ind 9437 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
8079impcom 125 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
81803impa 1196 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7875  0cc0 7877  1c1 7878   + caddc 7880   · cmul 7882  cmin 8195  0cn0 9246  cz 9323  ...cfz 10080  cexp 10615  Ccbc 10824  Σcsu 11502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fzo 10215  df-seqfrec 10525  df-exp 10616  df-fac 10803  df-bc 10825  df-ihash 10853  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-clim 11428  df-sumdc 11503
This theorem is referenced by:  binom1p  11634  efaddlem  11823
  Copyright terms: Public domain W3C validator