ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom GIF version

Theorem binom 11193
Description: The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11192. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁

Proof of Theorem binom
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5748 . . . . . 6 (𝑥 = 0 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑0))
2 oveq2 5748 . . . . . . 7 (𝑥 = 0 → (0...𝑥) = (0...0))
3 oveq1 5747 . . . . . . . . 9 (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘))
4 oveq1 5747 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥𝑘) = (0 − 𝑘))
54oveq2d 5756 . . . . . . . . . 10 (𝑥 = 0 → (𝐴↑(𝑥𝑘)) = (𝐴↑(0 − 𝑘)))
65oveq1d 5755 . . . . . . . . 9 (𝑥 = 0 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))
73, 6oveq12d 5758 . . . . . . . 8 (𝑥 = 0 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
87adantr 272 . . . . . . 7 ((𝑥 = 0 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
92, 8sumeq12dv 11081 . . . . . 6 (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
101, 9eqeq12d 2130 . . . . 5 (𝑥 = 0 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)))))
1110imbi2d 229 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))))
12 oveq2 5748 . . . . . 6 (𝑥 = 𝑛 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑛))
13 oveq2 5748 . . . . . . 7 (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛))
14 oveq1 5747 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘))
15 oveq1 5747 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝑥𝑘) = (𝑛𝑘))
1615oveq2d 5756 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑛𝑘)))
1716oveq1d 5755 . . . . . . . . 9 (𝑥 = 𝑛 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))
1814, 17oveq12d 5758 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
1918adantr 272 . . . . . . 7 ((𝑥 = 𝑛𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2013, 19sumeq12dv 11081 . . . . . 6 (𝑥 = 𝑛 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
2112, 20eqeq12d 2130 . . . . 5 (𝑥 = 𝑛 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))))
2221imbi2d 229 . . . 4 (𝑥 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))))
23 oveq2 5748 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑(𝑛 + 1)))
24 oveq2 5748 . . . . . . 7 (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1)))
25 oveq1 5747 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘))
26 oveq1 5747 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝑥𝑘) = ((𝑛 + 1) − 𝑘))
2726oveq2d 5756 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝐴↑(𝑥𝑘)) = (𝐴↑((𝑛 + 1) − 𝑘)))
2827oveq1d 5755 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))
2925, 28oveq12d 5758 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3029adantr 272 . . . . . . 7 ((𝑥 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3124, 30sumeq12dv 11081 . . . . . 6 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
3223, 31eqeq12d 2130 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘)))))
3332imbi2d 229 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
34 oveq2 5748 . . . . . 6 (𝑥 = 𝑁 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑁))
35 oveq2 5748 . . . . . . 7 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
36 oveq1 5747 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘))
37 oveq1 5747 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝑥𝑘) = (𝑁𝑘))
3837oveq2d 5756 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝐴↑(𝑥𝑘)) = (𝐴↑(𝑁𝑘)))
3938oveq1d 5755 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))
4036, 39oveq12d 5758 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4140adantr 272 . . . . . . 7 ((𝑥 = 𝑁𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4235, 41sumeq12dv 11081 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
4334, 42eqeq12d 2130 . . . . 5 (𝑥 = 𝑁 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘))) ↔ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
4443imbi2d 229 . . . 4 (𝑥 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥𝑘)) · (𝐵𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))))
45 exp0 10237 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
46 exp0 10237 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
4745, 46oveqan12d 5759 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
48 1t1e1 8823 . . . . . . . 8 (1 · 1) = 1
4947, 48syl6eq 2164 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
5049oveq2d 5756 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = (1 · 1))
5150, 48syl6eq 2164 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) = 1)
52 0z 9016 . . . . . 6 0 ∈ ℤ
53 ax-1cn 7677 . . . . . . 7 1 ∈ ℂ
5451, 53syl6eqel 2206 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ)
55 oveq2 5748 . . . . . . . . 9 (𝑘 = 0 → (0C𝑘) = (0C0))
56 0nn0 8943 . . . . . . . . . 10 0 ∈ ℕ0
57 bcn0 10441 . . . . . . . . . 10 (0 ∈ ℕ0 → (0C0) = 1)
5856, 57ax-mp 5 . . . . . . . . 9 (0C0) = 1
5955, 58syl6eq 2164 . . . . . . . 8 (𝑘 = 0 → (0C𝑘) = 1)
60 oveq2 5748 . . . . . . . . . . 11 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
61 0m0e0 8789 . . . . . . . . . . 11 (0 − 0) = 0
6260, 61syl6eq 2164 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = 0)
6362oveq2d 5756 . . . . . . . . 9 (𝑘 = 0 → (𝐴↑(0 − 𝑘)) = (𝐴↑0))
64 oveq2 5748 . . . . . . . . 9 (𝑘 = 0 → (𝐵𝑘) = (𝐵↑0))
6563, 64oveq12d 5758 . . . . . . . 8 (𝑘 = 0 → ((𝐴↑(0 − 𝑘)) · (𝐵𝑘)) = ((𝐴↑0) · (𝐵↑0)))
6659, 65oveq12d 5758 . . . . . . 7 (𝑘 = 0 → ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6766fsum1 11121 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
6852, 54, 67sylancr 408 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0))))
69 addcl 7709 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
7069exp0d 10358 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = 1)
7151, 68, 703eqtr4rd 2159 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵𝑘))))
72 simprl 503 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ∈ ℂ)
73 simprr 504 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
74 simpl 108 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → 𝑛 ∈ ℕ0)
75 id 19 . . . . . . 7 (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))))
7672, 73, 74, 75binomlem 11192 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ∧ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))
7776exp31 359 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7877a2d 26 . . . 4 (𝑛 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛𝑘)) · (𝐵𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵𝑘))))))
7911, 22, 33, 44, 71, 78nn0ind 9116 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)))))
8079impcom 124 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
81803impa 1159 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wcel 1463  (class class class)co 5740  cc 7582  0cc0 7584  1c1 7585   + caddc 7587   · cmul 7589  cmin 7897  0cn0 8928  cz 9005  ...cfz 9730  cexp 10232  Ccbc 10433  Σcsu 11062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-fz 9731  df-fzo 9860  df-seqfrec 10159  df-exp 10233  df-fac 10412  df-bc 10434  df-ihash 10462  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-clim 10988  df-sumdc 11063
This theorem is referenced by:  binom1p  11194  efaddlem  11279
  Copyright terms: Public domain W3C validator