Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑0)) |
2 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = 0 → (0...𝑥) = (0...0)) |
3 | | oveq1 5849 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥C𝑘) = (0C𝑘)) |
4 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑥 − 𝑘) = (0 − 𝑘)) |
5 | 4 | oveq2d 5858 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐴↑(𝑥 − 𝑘)) = (𝐴↑(0 − 𝑘))) |
6 | 5 | oveq1d 5857 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘))) |
7 | 3, 6 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘)))) |
8 | 7 | adantr 274 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘)))) |
9 | 2, 8 | sumeq12dv 11313 |
. . . . . 6
⊢ (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘)))) |
10 | 1, 9 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = 0 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) ↔ ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘))))) |
11 | 10 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘)))))) |
12 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑛)) |
13 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (0...𝑥) = (0...𝑛)) |
14 | | oveq1 5849 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑥C𝑘) = (𝑛C𝑘)) |
15 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (𝑥 − 𝑘) = (𝑛 − 𝑘)) |
16 | 15 | oveq2d 5858 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → (𝐴↑(𝑥 − 𝑘)) = (𝐴↑(𝑛 − 𝑘))) |
17 | 16 | oveq1d 5857 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘))) |
18 | 14, 17 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))) |
19 | 18 | adantr 274 |
. . . . . . 7
⊢ ((𝑥 = 𝑛 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = ((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))) |
20 | 13, 19 | sumeq12dv 11313 |
. . . . . 6
⊢ (𝑥 = 𝑛 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))) |
21 | 12, 20 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = 𝑛 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) ↔ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘))))) |
22 | 21 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑛 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))))) |
23 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑(𝑛 + 1))) |
24 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (0...𝑥) = (0...(𝑛 + 1))) |
25 | | oveq1 5849 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑥C𝑘) = ((𝑛 + 1)C𝑘)) |
26 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝑥 − 𝑘) = ((𝑛 + 1) − 𝑘)) |
27 | 26 | oveq2d 5858 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → (𝐴↑(𝑥 − 𝑘)) = (𝐴↑((𝑛 + 1) − 𝑘))) |
28 | 27 | oveq1d 5857 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘))) |
29 | 25, 28 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
30 | 29 | adantr 274 |
. . . . . . 7
⊢ ((𝑥 = (𝑛 + 1) ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = (((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
31 | 24, 30 | sumeq12dv 11313 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
32 | 23, 31 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) ↔ ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘))))) |
33 | 32 | imbi2d 229 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))))) |
34 | | oveq2 5850 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝐴 + 𝐵)↑𝑥) = ((𝐴 + 𝐵)↑𝑁)) |
35 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁)) |
36 | | oveq1 5849 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (𝑥C𝑘) = (𝑁C𝑘)) |
37 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (𝑥 − 𝑘) = (𝑁 − 𝑘)) |
38 | 37 | oveq2d 5858 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (𝐴↑(𝑥 − 𝑘)) = (𝐴↑(𝑁 − 𝑘))) |
39 | 38 | oveq1d 5857 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘))) |
40 | 36, 39 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
41 | 40 | adantr 274 |
. . . . . . 7
⊢ ((𝑥 = 𝑁 ∧ 𝑘 ∈ (0...𝑥)) → ((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = ((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
42 | 35, 41 | sumeq12dv 11313 |
. . . . . 6
⊢ (𝑥 = 𝑁 → Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
43 | 34, 42 | eqeq12d 2180 |
. . . . 5
⊢ (𝑥 = 𝑁 → (((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘))) ↔ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘))))) |
44 | 43 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑥) = Σ𝑘 ∈ (0...𝑥)((𝑥C𝑘) · ((𝐴↑(𝑥 − 𝑘)) · (𝐵↑𝑘)))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))))) |
45 | | exp0 10459 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
46 | | exp0 10459 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) |
47 | 45, 46 | oveqan12d 5861 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 ·
1)) |
48 | | 1t1e1 9009 |
. . . . . . . 8
⊢ (1
· 1) = 1 |
49 | 47, 48 | eqtrdi 2215 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1) |
50 | 49 | oveq2d 5858 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· ((𝐴↑0)
· (𝐵↑0))) = (1
· 1)) |
51 | 50, 48 | eqtrdi 2215 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· ((𝐴↑0)
· (𝐵↑0))) =
1) |
52 | | 0z 9202 |
. . . . . 6
⊢ 0 ∈
ℤ |
53 | | ax-1cn 7846 |
. . . . . . 7
⊢ 1 ∈
ℂ |
54 | 51, 53 | eqeltrdi 2257 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1
· ((𝐴↑0)
· (𝐵↑0)))
∈ ℂ) |
55 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) |
56 | | 0nn0 9129 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
57 | | bcn0 10668 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → (0C0) = 1) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
⊢ (0C0) =
1 |
59 | 55, 58 | eqtrdi 2215 |
. . . . . . . 8
⊢ (𝑘 = 0 → (0C𝑘) = 1) |
60 | | oveq2 5850 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (0 − 𝑘) = (0 −
0)) |
61 | | 0m0e0 8969 |
. . . . . . . . . . 11
⊢ (0
− 0) = 0 |
62 | 60, 61 | eqtrdi 2215 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
63 | 62 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝐴↑(0 − 𝑘)) = (𝐴↑0)) |
64 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝐵↑𝑘) = (𝐵↑0)) |
65 | 63, 64 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑0) · (𝐵↑0))) |
66 | 59, 65 | oveq12d 5860 |
. . . . . . 7
⊢ (𝑘 = 0 → ((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0)))) |
67 | 66 | fsum1 11353 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ (1 · ((𝐴↑0) · (𝐵↑0))) ∈ ℂ) →
Σ𝑘 ∈
(0...0)((0C𝑘) ·
((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0)))) |
68 | 52, 54, 67 | sylancr 411 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
Σ𝑘 ∈
(0...0)((0C𝑘) ·
((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘))) = (1 · ((𝐴↑0) · (𝐵↑0)))) |
69 | | addcl 7878 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
70 | 69 | exp0d 10582 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = 1) |
71 | 51, 68, 70 | 3eqtr4rd 2209 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑0) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((𝐴↑(0 − 𝑘)) · (𝐵↑𝑘)))) |
72 | | simprl 521 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
→ 𝐴 ∈
ℂ) |
73 | | simprr 522 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
→ 𝐵 ∈
ℂ) |
74 | | simpl 108 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
→ 𝑛 ∈
ℕ0) |
75 | | id 19 |
. . . . . . 7
⊢ (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘))) → ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))) |
76 | 72, 73, 74, 75 | binomlem 11424 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ0
∧ (𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ))
∧ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
77 | 76 | exp31 362 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ (((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘))) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))))) |
78 | 77 | a2d 26 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ ((𝐴 + 𝐵)↑𝑛) = Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((𝐴↑(𝑛 − 𝑘)) · (𝐵↑𝑘)))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(𝑛 + 1)) = Σ𝑘 ∈ (0...(𝑛 + 1))(((𝑛 + 1)C𝑘) · ((𝐴↑((𝑛 + 1) − 𝑘)) · (𝐵↑𝑘)))))) |
79 | 11, 22, 33, 44, 71, 78 | nn0ind 9305 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘))))) |
80 | 79 | impcom 124 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
81 | 80 | 3impa 1184 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |