![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prodf1 | GIF version |
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
prodf1 | ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1t1e1 9137 | . . 3 ⊢ (1 · 1) = 1 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → (1 · 1) = 1) |
3 | prodf1.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 3 | eleq2i 2260 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | 4 | biimpi 120 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | ax-1cn 7967 | . . 3 ⊢ 1 ∈ ℂ | |
7 | elfzuz 10090 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
8 | 7, 3 | eleqtrrdi 2287 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ 𝑍) |
9 | 8 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ 𝑍) |
10 | fvconst2g 5773 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {1})‘𝑘) = 1) | |
11 | 6, 9, 10 | sylancr 414 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {1})‘𝑘) = 1) |
12 | 6 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → 1 ∈ ℂ) |
13 | 3 | eleq2i 2260 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
14 | 6, 10 | mpan 424 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
15 | 13, 14 | sylbir 135 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {1})‘𝑘) = 1) |
16 | 15 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) = 1) |
17 | 16, 6 | eqeltrdi 2284 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
18 | mulcl 8001 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ) | |
19 | 18 | adantl 277 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
20 | 2, 5, 11, 12, 17, 19 | seq3id3 10598 | 1 ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {csn 3619 × cxp 4658 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 1c1 7875 · cmul 7879 ℤ≥cuz 9595 ...cfz 10077 seqcseq 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 df-seqfrec 10522 |
This theorem is referenced by: prodf1f 11689 fprodntrivap 11730 prod1dc 11732 |
Copyright terms: Public domain | W3C validator |