Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodf1 | GIF version |
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
prodf1 | ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1t1e1 9030 | . . 3 ⊢ (1 · 1) = 1 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → (1 · 1) = 1) |
3 | prodf1.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 3 | eleq2i 2237 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | 4 | biimpi 119 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | ax-1cn 7867 | . . 3 ⊢ 1 ∈ ℂ | |
7 | elfzuz 9977 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
8 | 7, 3 | eleqtrrdi 2264 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ 𝑍) |
9 | 8 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ 𝑍) |
10 | fvconst2g 5710 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {1})‘𝑘) = 1) | |
11 | 6, 9, 10 | sylancr 412 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {1})‘𝑘) = 1) |
12 | 6 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → 1 ∈ ℂ) |
13 | 3 | eleq2i 2237 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
14 | 6, 10 | mpan 422 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
15 | 13, 14 | sylbir 134 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {1})‘𝑘) = 1) |
16 | 15 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) = 1) |
17 | 16, 6 | eqeltrdi 2261 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
18 | mulcl 7901 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ) | |
19 | 18 | adantl 275 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
20 | 2, 5, 11, 12, 17, 19 | seq3id3 10463 | 1 ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {csn 3583 × cxp 4609 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 1c1 7775 · cmul 7779 ℤ≥cuz 9487 ...cfz 9965 seqcseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 df-seqfrec 10402 |
This theorem is referenced by: prodf1f 11506 fprodntrivap 11547 prod1dc 11549 |
Copyright terms: Public domain | W3C validator |