Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodf1 | GIF version |
Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
prodf1 | ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1t1e1 9009 | . . 3 ⊢ (1 · 1) = 1 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → (1 · 1) = 1) |
3 | prodf1.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 3 | eleq2i 2233 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | 4 | biimpi 119 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | ax-1cn 7846 | . . 3 ⊢ 1 ∈ ℂ | |
7 | elfzuz 9956 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
8 | 7, 3 | eleqtrrdi 2260 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ 𝑍) |
9 | 8 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ 𝑍) |
10 | fvconst2g 5699 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {1})‘𝑘) = 1) | |
11 | 6, 9, 10 | sylancr 411 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {1})‘𝑘) = 1) |
12 | 6 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → 1 ∈ ℂ) |
13 | 3 | eleq2i 2233 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
14 | 6, 10 | mpan 421 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
15 | 13, 14 | sylbir 134 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {1})‘𝑘) = 1) |
16 | 15 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) = 1) |
17 | 16, 6 | eqeltrdi 2257 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
18 | mulcl 7880 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ) | |
19 | 18 | adantl 275 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
20 | 2, 5, 11, 12, 17, 19 | seq3id3 10442 | 1 ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {csn 3576 × cxp 4602 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 1c1 7754 · cmul 7758 ℤ≥cuz 9466 ...cfz 9944 seqcseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 df-seqfrec 10381 |
This theorem is referenced by: prodf1f 11484 fprodntrivap 11525 prod1dc 11527 |
Copyright terms: Public domain | W3C validator |