| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodf1 | GIF version | ||
| Description: The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodf1.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| prodf1 | ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1t1e1 9271 | . . 3 ⊢ (1 · 1) = 1 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → (1 · 1) = 1) |
| 3 | prodf1.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 3 | eleq2i 2296 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | 4 | biimpi 120 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | ax-1cn 8100 | . . 3 ⊢ 1 ∈ ℂ | |
| 7 | elfzuz 10225 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 8 | 7, 3 | eleqtrrdi 2323 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ 𝑍) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ 𝑍) |
| 10 | fvconst2g 5857 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {1})‘𝑘) = 1) | |
| 11 | 6, 9, 10 | sylancr 414 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {1})‘𝑘) = 1) |
| 12 | 6 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → 1 ∈ ℂ) |
| 13 | 3 | eleq2i 2296 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 14 | 6, 10 | mpan 424 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑍 × {1})‘𝑘) = 1) |
| 15 | 13, 14 | sylbir 135 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ((𝑍 × {1})‘𝑘) = 1) |
| 16 | 15 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) = 1) |
| 17 | 16, 6 | eqeltrdi 2320 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {1})‘𝑘) ∈ ℂ) |
| 18 | mulcl 8134 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ) | |
| 19 | 18 | adantl 277 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
| 20 | 2, 5, 11, 12, 17, 19 | seq3id3 10754 | 1 ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 × cxp 4717 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 1c1 8008 · cmul 8012 ℤ≥cuz 9730 ...cfz 10212 seqcseq 10677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-seqfrec 10678 |
| This theorem is referenced by: prodf1f 12062 fprodntrivap 12103 prod1dc 12105 |
| Copyright terms: Public domain | W3C validator |