ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodlo GIF version

Theorem modaddmodlo 9760
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodlo ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodlo
StepHypRef Expression
1 elfzoelz 9523 . . . . . . 7 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
21adantl 271 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℤ)
3 zq 9080 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
42, 3syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℚ)
5 zmodcl 9716 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
65adantr 270 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℕ0)
76nn0zd 8836 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℤ)
8 zq 9080 . . . . . 6 ((𝐴 mod 𝑀) ∈ ℤ → (𝐴 mod 𝑀) ∈ ℚ)
97, 8syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℚ)
10 qaddcl 9089 . . . . 5 ((𝐵 ∈ ℚ ∧ (𝐴 mod 𝑀) ∈ ℚ) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
114, 9, 10syl2anc 403 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
12 simplr 497 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℕ)
13 nnq 9087 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
1412, 13syl 14 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℚ)
152zred 8838 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℝ)
166nn0red 8697 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℝ)
17 elfzole1 9531 . . . . . 6 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 0 ≤ 𝐵)
1817adantl 271 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ 𝐵)
196nn0ge0d 8699 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ (𝐴 mod 𝑀))
2015, 16, 18, 19addge0d 7975 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ (𝐵 + (𝐴 mod 𝑀)))
21 elfzolt2 9532 . . . . . 6 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 < (𝑀 − (𝐴 mod 𝑀)))
2221adantl 271 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 < (𝑀 − (𝐴 mod 𝑀)))
2312nnred 8407 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℝ)
2415, 16, 23ltaddsubd 7998 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) < 𝑀𝐵 < (𝑀 − (𝐴 mod 𝑀))))
2522, 24mpbird 165 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) < 𝑀)
26 modqid 9721 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℚ ∧ 𝑀 ∈ ℚ) ∧ (0 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (𝐵 + (𝐴 mod 𝑀)))
2711, 14, 20, 25, 26syl22anc 1175 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (𝐵 + (𝐴 mod 𝑀)))
28 zq 9080 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2928ad2antrr 472 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐴 ∈ ℚ)
3012nngt0d 8437 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 < 𝑀)
31 modqadd2mod 9746 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3229, 4, 14, 30, 31syl22anc 1175 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3327, 32eqtr3d 2122 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))
3433ex 113 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438   class class class wbr 3837  (class class class)co 5634  0cc0 7329   + caddc 7332   < clt 7501  cle 7502  cmin 7632  cn 8394  0cn0 8643  cz 8720  cq 9073  ..^cfzo 9518   mod cmo 9694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-fl 9642  df-mod 9695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator