ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modaddmodlo GIF version

Theorem modaddmodlo 10540
Description: The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodlo ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodlo
StepHypRef Expression
1 elfzoelz 10276 . . . . . . 7 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
21adantl 277 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℤ)
3 zq 9754 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
42, 3syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℚ)
5 zmodcl 10496 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
65adantr 276 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℕ0)
76nn0zd 9500 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℤ)
8 zq 9754 . . . . . 6 ((𝐴 mod 𝑀) ∈ ℤ → (𝐴 mod 𝑀) ∈ ℚ)
97, 8syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℚ)
10 qaddcl 9763 . . . . 5 ((𝐵 ∈ ℚ ∧ (𝐴 mod 𝑀) ∈ ℚ) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
114, 9, 10syl2anc 411 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℚ)
12 simplr 528 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℕ)
13 nnq 9761 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
1412, 13syl 14 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℚ)
152zred 9502 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 ∈ ℝ)
166nn0red 9356 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐴 mod 𝑀) ∈ ℝ)
17 elfzole1 10285 . . . . . 6 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 0 ≤ 𝐵)
1817adantl 277 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ 𝐵)
196nn0ge0d 9358 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ (𝐴 mod 𝑀))
2015, 16, 18, 19addge0d 8602 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 ≤ (𝐵 + (𝐴 mod 𝑀)))
21 elfzolt2 10286 . . . . . 6 (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → 𝐵 < (𝑀 − (𝐴 mod 𝑀)))
2221adantl 277 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐵 < (𝑀 − (𝐴 mod 𝑀)))
2312nnred 9056 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝑀 ∈ ℝ)
2415, 16, 23ltaddsubd 8625 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) < 𝑀𝐵 < (𝑀 − (𝐴 mod 𝑀))))
2522, 24mpbird 167 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) < 𝑀)
26 modqid 10501 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℚ ∧ 𝑀 ∈ ℚ) ∧ (0 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (𝐵 + (𝐴 mod 𝑀)))
2711, 14, 20, 25, 26syl22anc 1251 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (𝐵 + (𝐴 mod 𝑀)))
28 zq 9754 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2928ad2antrr 488 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 𝐴 ∈ ℚ)
3012nngt0d 9087 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → 0 < 𝑀)
31 modqadd2mod 10526 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3229, 4, 14, 30, 31syl22anc 1251 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
3327, 32eqtr3d 2241 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀)))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀))
3433ex 115 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  0cc0 7932   + caddc 7935   < clt 8114  cle 8115  cmin 8250  cn 9043  0cn0 9302  cz 9379  cq 9747  ..^cfzo 10271   mod cmo 10474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator