![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srabaseg | GIF version |
Description: Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
srapart.a | β’ (π β π΄ = ((subringAlg βπ)βπ)) |
srapart.s | β’ (π β π β (Baseβπ)) |
srapart.ex | β’ (π β π β π) |
Ref | Expression |
---|---|
srabaseg | β’ (π β (Baseβπ) = (Baseβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | . 2 β’ (π β π΄ = ((subringAlg βπ)βπ)) | |
2 | srapart.s | . 2 β’ (π β π β (Baseβπ)) | |
3 | srapart.ex | . 2 β’ (π β π β π) | |
4 | baseslid 12533 | . 2 β’ (Base = Slot (Baseβndx) β§ (Baseβndx) β β) | |
5 | scandxnbasendx 12627 | . 2 β’ (Scalarβndx) β (Baseβndx) | |
6 | vscandxnbasendx 12632 | . 2 β’ ( Β·π βndx) β (Baseβndx) | |
7 | ipndxnbasendx 12645 | . 2 β’ (Β·πβndx) β (Baseβndx) | |
8 | 1, 2, 3, 4, 5, 6, 7 | sralemg 13627 | 1 β’ (π β (Baseβπ) = (Baseβπ΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1363 β wcel 2158 β wss 3141 βcfv 5228 Basecbs 12476 subringAlg csra 13622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-iress 12484 df-mulr 12565 df-sca 12567 df-vsca 12568 df-ip 12569 df-sra 13624 |
This theorem is referenced by: sratopng 13636 sraring 13638 sralmod 13639 sralmod0g 13640 rlmbasg 13644 |
Copyright terms: Public domain | W3C validator |