| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | GIF version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mgpbasg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | mulrslid 13014 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12909 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | baseslid 12939 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 5 | basendxnplusgndx 13007 | . . . . 5 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 6 | plusgslid 12994 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 8 | 4, 5, 7 | setsslnid 12934 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 11 | eqid 2206 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 10, 11 | mgpvalg 13735 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
| 13 | 12 | fveq2d 5590 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑀) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 14 | 9, 13 | eqtr4d 2242 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
| 15 | 1, 14 | eqtrid 2251 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 〈cop 3638 ‘cfv 5277 (class class class)co 5954 ℕcn 9049 ndxcnx 12879 sSet csts 12880 Slot cslot 12881 Basecbs 12882 +gcplusg 12959 .rcmulr 12960 mulGrpcmgp 13732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-mgp 13733 |
| This theorem is referenced by: mgptopng 13741 mgpress 13743 rngass 13751 rngcl 13756 isrngd 13765 rngpropd 13767 dfur2g 13774 srgcl 13782 srgass 13783 srgideu 13784 srgidcl 13788 srgidmlem 13790 issrgid 13793 srg1zr 13799 srgpcomp 13802 srgpcompp 13803 srgpcomppsc 13804 ringcl 13825 crngcom 13826 iscrng2 13827 ringass 13828 ringideu 13829 ringidcl 13832 ringidmlem 13834 isringid 13837 ringidss 13841 ringpropd 13850 crngpropd 13851 isringd 13853 iscrngd 13854 ring1 13871 oppr1g 13894 unitgrpbasd 13927 unitsubm 13931 rngidpropdg 13958 dfrhm2 13966 rhmmul 13976 isrhm2d 13977 rhmf1o 13980 subrgsubm 14046 issubrg3 14059 rhmpropd 14066 rnglidlmmgm 14308 rnglidlmsgrp 14309 cnfldexp 14389 expghmap 14419 lgseisenlem3 15599 lgseisenlem4 15600 |
| Copyright terms: Public domain | W3C validator |