| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | GIF version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mgpbasg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | mulrslid 13151 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13045 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | baseslid 13076 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 5 | basendxnplusgndx 13144 | . . . . 5 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 6 | plusgslid 13131 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 8 | 4, 5, 7 | setsslnid 13070 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 11 | eqid 2229 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 10, 11 | mgpvalg 13872 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
| 13 | 12 | fveq2d 5627 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑀) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 14 | 9, 13 | eqtr4d 2265 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
| 15 | 1, 14 | eqtrid 2274 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5314 (class class class)co 5994 ℕcn 9098 ndxcnx 13015 sSet csts 13016 Slot cslot 13017 Basecbs 13018 +gcplusg 13096 .rcmulr 13097 mulGrpcmgp 13869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-mgp 13870 |
| This theorem is referenced by: mgptopng 13878 mgpress 13880 rngass 13888 rngcl 13893 isrngd 13902 rngpropd 13904 dfur2g 13911 srgcl 13919 srgass 13920 srgideu 13921 srgidcl 13925 srgidmlem 13927 issrgid 13930 srg1zr 13936 srgpcomp 13939 srgpcompp 13940 srgpcomppsc 13941 ringcl 13962 crngcom 13963 iscrng2 13964 ringass 13965 ringideu 13966 ringidcl 13969 ringidmlem 13971 isringid 13974 ringidss 13978 ringpropd 13987 crngpropd 13988 isringd 13990 iscrngd 13991 ring1 14008 oppr1g 14031 unitgrpbasd 14064 unitsubm 14068 rngidpropdg 14095 dfrhm2 14103 rhmmul 14113 isrhm2d 14114 rhmf1o 14117 subrgsubm 14183 issubrg3 14196 rhmpropd 14203 rnglidlmmgm 14445 rnglidlmsgrp 14446 cnfldexp 14526 expghmap 14556 lgseisenlem3 15736 lgseisenlem4 15737 |
| Copyright terms: Public domain | W3C validator |