![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpbasg | GIF version |
Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
mgpbasg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | mulrslid 12749 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12645 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
4 | baseslid 12675 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
5 | basendxnplusgndx 12742 | . . . . 5 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
6 | plusgslid 12730 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
8 | 4, 5, 7 | setsslnid 12670 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
11 | eqid 2193 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 10, 11 | mgpvalg 13419 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
13 | 12 | fveq2d 5558 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑀) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
14 | 9, 13 | eqtr4d 2229 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
15 | 1, 14 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ‘cfv 5254 (class class class)co 5918 ℕcn 8982 ndxcnx 12615 sSet csts 12616 Slot cslot 12617 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 mulGrpcmgp 13416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-mgp 13417 |
This theorem is referenced by: mgptopng 13425 mgpress 13427 rngass 13435 rngcl 13440 isrngd 13449 rngpropd 13451 dfur2g 13458 srgcl 13466 srgass 13467 srgideu 13468 srgidcl 13472 srgidmlem 13474 issrgid 13477 srg1zr 13483 srgpcomp 13486 srgpcompp 13487 srgpcomppsc 13488 ringcl 13509 crngcom 13510 iscrng2 13511 ringass 13512 ringideu 13513 ringidcl 13516 ringidmlem 13518 isringid 13521 ringidss 13525 ringpropd 13534 crngpropd 13535 isringd 13537 iscrngd 13538 ring1 13555 oppr1g 13578 unitgrpbasd 13611 unitsubm 13615 rngidpropdg 13642 dfrhm2 13650 rhmmul 13660 isrhm2d 13661 rhmf1o 13664 subrgsubm 13730 issubrg3 13743 rhmpropd 13750 rnglidlmmgm 13992 rnglidlmsgrp 13993 cnfldexp 14065 expghmap 14095 lgseisenlem3 15188 lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |