| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | GIF version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| mgpbasg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | mulrslid 13173 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13067 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | baseslid 13098 | . . . . 5 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 5 | basendxnplusgndx 13166 | . . . . 5 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 6 | plusgslid 13153 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 8 | 4, 5, 7 | setsslnid 13092 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 11 | eqid 2229 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 10, 11 | mgpvalg 13894 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
| 13 | 12 | fveq2d 5633 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑀) = (Base‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 14 | 9, 13 | eqtr4d 2265 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
| 15 | 1, 14 | eqtrid 2274 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5318 (class class class)co 6007 ℕcn 9118 ndxcnx 13037 sSet csts 13038 Slot cslot 13039 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 mulGrpcmgp 13891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-mgp 13892 |
| This theorem is referenced by: mgptopng 13900 mgpress 13902 rngass 13910 rngcl 13915 isrngd 13924 rngpropd 13926 dfur2g 13933 srgcl 13941 srgass 13942 srgideu 13943 srgidcl 13947 srgidmlem 13949 issrgid 13952 srg1zr 13958 srgpcomp 13961 srgpcompp 13962 srgpcomppsc 13963 ringcl 13984 crngcom 13985 iscrng2 13986 ringass 13987 ringideu 13988 ringidcl 13991 ringidmlem 13993 isringid 13996 ringidss 14000 ringpropd 14009 crngpropd 14010 isringd 14012 iscrngd 14013 ring1 14030 oppr1g 14053 unitgrpbasd 14087 unitsubm 14091 rngidpropdg 14118 dfrhm2 14126 rhmmul 14136 isrhm2d 14137 rhmf1o 14140 subrgsubm 14206 issubrg3 14219 rhmpropd 14226 rnglidlmmgm 14468 rnglidlmsgrp 14469 cnfldexp 14549 expghmap 14579 lgseisenlem3 15759 lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |