ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprbasg GIF version

Theorem opprbasg 13200
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprbas.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
opprbasg (𝑅𝑉𝐵 = (Base‘𝑂))

Proof of Theorem opprbasg
StepHypRef Expression
1 opprbas.2 . 2 𝐵 = (Base‘𝑅)
2 opprbas.1 . . 3 𝑂 = (oppr𝑅)
3 baseslid 12513 . . 3 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
4 basendxnmulrndx 12586 . . 3 (Base‘ndx) ≠ (.r‘ndx)
52, 3, 4opprsllem 13199 . 2 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
61, 5eqtrid 2222 1 (𝑅𝑉𝐵 = (Base‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cfv 5216  Basecbs 12456  opprcoppr 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-tpos 6245  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-mulr 12544  df-oppr 13193
This theorem is referenced by:  opprring  13202  opprringbg  13203  oppr0g  13204  oppr1g  13205  opprnegg  13206  mulgass3  13207  1unit  13229  opprunitd  13232  crngunit  13233  unitmulcl  13235  unitgrp  13238  unitnegcl  13252  unitpropdg  13270  subrguss  13317  subrgunit  13320
  Copyright terms: Public domain W3C validator