ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprbasg GIF version

Theorem opprbasg 13952
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprbas.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
opprbasg (𝑅𝑉𝐵 = (Base‘𝑂))

Proof of Theorem opprbasg
StepHypRef Expression
1 opprbas.2 . 2 𝐵 = (Base‘𝑅)
2 opprbas.1 . . 3 𝑂 = (oppr𝑅)
3 baseslid 13004 . . 3 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
4 basendxnmulrndx 13081 . . 3 (Base‘ndx) ≠ (.r‘ndx)
52, 3, 4opprsllem 13951 . 2 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
61, 5eqtrid 2252 1 (𝑅𝑉𝐵 = (Base‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  cfv 5290  Basecbs 12947  opprcoppr 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-mulr 13038  df-oppr 13945
This theorem is referenced by:  opprrng  13954  opprrngbg  13955  opprring  13956  opprringbg  13957  oppr0g  13958  oppr1g  13959  opprnegg  13960  opprsubgg  13961  mulgass3  13962  1unit  13984  opprunitd  13987  crngunit  13988  unitmulcl  13990  unitgrp  13993  unitnegcl  14007  unitpropdg  14025  rhmopp  14053  elrhmunit  14054  subrguss  14113  subrgunit  14116  opprdomnbg  14151  isridlrng  14359  isridl  14381  ridl1  14388  2idlcpblrng  14400  crngridl  14407
  Copyright terms: Public domain W3C validator