![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprbasg | GIF version |
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
opprbasg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | opprbas.1 | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
3 | baseslid 12675 | . . 3 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
4 | basendxnmulrndx 12751 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
5 | 2, 3, 4 | opprsllem 13570 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
6 | 1, 5 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 Basecbs 12618 opprcoppr 13563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-mulr 12709 df-oppr 13564 |
This theorem is referenced by: opprrng 13573 opprrngbg 13574 opprring 13575 opprringbg 13576 oppr0g 13577 oppr1g 13578 opprnegg 13579 opprsubgg 13580 mulgass3 13581 1unit 13603 opprunitd 13606 crngunit 13607 unitmulcl 13609 unitgrp 13612 unitnegcl 13626 unitpropdg 13644 rhmopp 13672 elrhmunit 13673 subrguss 13732 subrgunit 13735 opprdomnbg 13770 isridlrng 13978 isridl 14000 ridl1 14007 2idlcpblrng 14019 crngridl 14026 |
Copyright terms: Public domain | W3C validator |