| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemqf1o | GIF version | ||
| Description: Lemma for seq3f1o 10739. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| iseqf1olemqf.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| iseqf1olemqf.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| iseqf1olemqf.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| Ref | Expression |
|---|---|
| iseqf1olemqf1o | ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemqf.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 2 | iseqf1olemqf.j | . . . 4 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
| 3 | iseqf1olemqf.q | . . . 4 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
| 4 | 1, 2, 3 | iseqf1olemqf 10726 | . . 3 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 5 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐾 ∈ (𝑀...𝑁)) |
| 6 | 2 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 7 | simplrl 535 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 ∈ (𝑀...𝑁)) | |
| 8 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑤 ∈ (𝑀...𝑁)) | |
| 9 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → (𝑄‘𝑣) = (𝑄‘𝑤)) | |
| 10 | 5, 6, 3, 7, 8, 9 | iseqf1olemmo 10727 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 = 𝑤) |
| 11 | 10 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
| 12 | 11 | ralrimivva 2612 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
| 13 | dff13 5892 | . . 3 ⊢ (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤))) | |
| 14 | 4, 12, 13 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
| 15 | elfzel1 10220 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
| 16 | 1, 15 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 17 | elfzel2 10219 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
| 18 | 1, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 19 | 16, 18 | fzfigd 10653 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 20 | enrefg 6915 | . . . 4 ⊢ ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁)) | |
| 21 | 19, 20 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁)) |
| 22 | f1finf1o 7114 | . . 3 ⊢ (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | |
| 23 | 21, 19, 22 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
| 24 | 14, 23 | mpbid 147 | 1 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ifcif 3602 class class class wbr 4083 ↦ cmpt 4145 ◡ccnv 4718 ⟶wf 5314 –1-1→wf1 5315 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6001 ≈ cen 6885 Fincfn 6887 1c1 8000 − cmin 8317 ℤcz 9446 ...cfz 10204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: seq3f1olemqsumkj 10733 seq3f1olemqsumk 10734 seq3f1olemstep 10736 |
| Copyright terms: Public domain | W3C validator |