ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o GIF version

Theorem iseqf1olemqf1o 10580
Description: Lemma for seq3f1o 10591. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemqf1o (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁   𝜑,𝑢
Allowed substitution hint:   𝑄(𝑢)

Proof of Theorem iseqf1olemqf1o
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 iseqf1olemqf.j . . . 4 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
3 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
41, 2, 3iseqf1olemqf 10578 . . 3 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
51ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐾 ∈ (𝑀...𝑁))
62ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 ∈ (𝑀...𝑁))
8 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑤 ∈ (𝑀...𝑁))
9 simpr 110 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → (𝑄𝑣) = (𝑄𝑤))
105, 6, 3, 7, 8, 9iseqf1olemmo 10579 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 = 𝑤)
1110ex 115 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
1211ralrimivva 2576 . . 3 (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
13 dff13 5812 . . 3 (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤)))
144, 12, 13sylanbrc 417 . 2 (𝜑𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁))
15 elfzel1 10093 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
161, 15syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
17 elfzel2 10092 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
181, 17syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
1916, 18fzfigd 10505 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
20 enrefg 6820 . . . 4 ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁))
2119, 20syl 14 . . 3 (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁))
22 f1finf1o 7008 . . 3 (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2321, 19, 22syl2anc 411 . 2 (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2414, 23mpbid 147 1 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  ifcif 3558   class class class wbr 4030  cmpt 4091  ccnv 4659  wf 5251  1-1wf1 5252  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cen 6794  Fincfn 6796  1c1 7875  cmin 8192  cz 9320  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586  seq3f1olemstep  10588
  Copyright terms: Public domain W3C validator