ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o GIF version

Theorem iseqf1olemqf1o 10449
Description: Lemma for seq3f1o 10460. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemqf1o (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁   𝜑,𝑢
Allowed substitution hint:   𝑄(𝑢)

Proof of Theorem iseqf1olemqf1o
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 iseqf1olemqf.j . . . 4 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
3 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
41, 2, 3iseqf1olemqf 10447 . . 3 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
51ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐾 ∈ (𝑀...𝑁))
62ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 simplrl 530 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 ∈ (𝑀...𝑁))
8 simplrr 531 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑤 ∈ (𝑀...𝑁))
9 simpr 109 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → (𝑄𝑣) = (𝑄𝑤))
105, 6, 3, 7, 8, 9iseqf1olemmo 10448 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 = 𝑤)
1110ex 114 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
1211ralrimivva 2552 . . 3 (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
13 dff13 5747 . . 3 (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤)))
144, 12, 13sylanbrc 415 . 2 (𝜑𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁))
15 elfzel1 9980 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
161, 15syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
17 elfzel2 9979 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
181, 17syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
1916, 18fzfigd 10387 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
20 enrefg 6742 . . . 4 ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁))
2119, 20syl 14 . . 3 (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁))
22 f1finf1o 6924 . . 3 (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2321, 19, 22syl2anc 409 . 2 (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2414, 23mpbid 146 1 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  ifcif 3526   class class class wbr 3989  cmpt 4050  ccnv 4610  wf 5194  1-1wf1 5195  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cen 6716  Fincfn 6718  1c1 7775  cmin 8090  cz 9212  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  seq3f1olemqsumkj  10454  seq3f1olemqsumk  10455  seq3f1olemstep  10457
  Copyright terms: Public domain W3C validator