Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o GIF version

Theorem iseqf1olemqf1o 10370
 Description: Lemma for seq3f1o 10381. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemqf1o (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁   𝜑,𝑢
Allowed substitution hint:   𝑄(𝑢)

Proof of Theorem iseqf1olemqf1o
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 iseqf1olemqf.j . . . 4 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
3 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
41, 2, 3iseqf1olemqf 10368 . . 3 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
51ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐾 ∈ (𝑀...𝑁))
62ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 simplrl 525 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 ∈ (𝑀...𝑁))
8 simplrr 526 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑤 ∈ (𝑀...𝑁))
9 simpr 109 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → (𝑄𝑣) = (𝑄𝑤))
105, 6, 3, 7, 8, 9iseqf1olemmo 10369 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 = 𝑤)
1110ex 114 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
1211ralrimivva 2536 . . 3 (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
13 dff13 5709 . . 3 (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤)))
144, 12, 13sylanbrc 414 . 2 (𝜑𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁))
15 elfzel1 9905 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
161, 15syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
17 elfzel2 9904 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
181, 17syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
1916, 18fzfigd 10308 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
20 enrefg 6698 . . . 4 ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁))
2119, 20syl 14 . . 3 (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁))
22 f1finf1o 6880 . . 3 (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2321, 19, 22syl2anc 409 . 2 (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2414, 23mpbid 146 1 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2125  ∀wral 2432  ifcif 3501   class class class wbr 3961   ↦ cmpt 4021  ◡ccnv 4578  ⟶wf 5159  –1-1→wf1 5160  –1-1-onto→wf1o 5162  ‘cfv 5163  (class class class)co 5814   ≈ cen 6672  Fincfn 6674  1c1 7712   − cmin 8025  ℤcz 9146  ...cfz 9890 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-1o 6353  df-er 6469  df-en 6675  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-fz 9891 This theorem is referenced by:  seq3f1olemqsumkj  10375  seq3f1olemqsumk  10376  seq3f1olemstep  10378
 Copyright terms: Public domain W3C validator