![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqf1olemqf1o | GIF version |
Description: Lemma for seq3f1o 10524. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqf.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqf.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqf.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
Ref | Expression |
---|---|
iseqf1olemqf1o | ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqf.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
2 | iseqf1olemqf.j | . . . 4 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
3 | iseqf1olemqf.q | . . . 4 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
4 | 1, 2, 3 | iseqf1olemqf 10511 | . . 3 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
5 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐾 ∈ (𝑀...𝑁)) |
6 | 2 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
7 | simplrl 535 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 ∈ (𝑀...𝑁)) | |
8 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑤 ∈ (𝑀...𝑁)) | |
9 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → (𝑄‘𝑣) = (𝑄‘𝑤)) | |
10 | 5, 6, 3, 7, 8, 9 | iseqf1olemmo 10512 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 = 𝑤) |
11 | 10 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
12 | 11 | ralrimivva 2572 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
13 | dff13 5786 | . . 3 ⊢ (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤))) | |
14 | 4, 12, 13 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
15 | elfzel1 10044 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
16 | 1, 15 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
17 | elfzel2 10043 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
18 | 1, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 16, 18 | fzfigd 10451 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
20 | enrefg 6783 | . . . 4 ⊢ ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁)) | |
21 | 19, 20 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁)) |
22 | f1finf1o 6966 | . . 3 ⊢ (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | |
23 | 21, 19, 22 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
24 | 14, 23 | mpbid 147 | 1 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ifcif 3549 class class class wbr 4018 ↦ cmpt 4079 ◡ccnv 4640 ⟶wf 5228 –1-1→wf1 5229 –1-1-onto→wf1o 5231 ‘cfv 5232 (class class class)co 5892 ≈ cen 6757 Fincfn 6759 1c1 7832 − cmin 8148 ℤcz 9273 ...cfz 10028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-addcom 7931 ax-addass 7933 ax-distr 7935 ax-i2m1 7936 ax-0lt1 7937 ax-0id 7939 ax-rnegex 7940 ax-cnre 7942 ax-pre-ltirr 7943 ax-pre-ltwlin 7944 ax-pre-lttrn 7945 ax-pre-apti 7946 ax-pre-ltadd 7947 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-frec 6411 df-1o 6436 df-er 6554 df-en 6760 df-fin 6762 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 df-sub 8150 df-neg 8151 df-inn 8940 df-n0 9197 df-z 9274 df-uz 9549 df-fz 10029 |
This theorem is referenced by: seq3f1olemqsumkj 10518 seq3f1olemqsumk 10519 seq3f1olemstep 10521 |
Copyright terms: Public domain | W3C validator |