Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemqf1o | GIF version |
Description: Lemma for seq3f1o 10439. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqf.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqf.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqf.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
Ref | Expression |
---|---|
iseqf1olemqf1o | ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqf.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
2 | iseqf1olemqf.j | . . . 4 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
3 | iseqf1olemqf.q | . . . 4 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
4 | 1, 2, 3 | iseqf1olemqf 10426 | . . 3 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
5 | 1 | ad2antrr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐾 ∈ (𝑀...𝑁)) |
6 | 2 | ad2antrr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
7 | simplrl 525 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 ∈ (𝑀...𝑁)) | |
8 | simplrr 526 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑤 ∈ (𝑀...𝑁)) | |
9 | simpr 109 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → (𝑄‘𝑣) = (𝑄‘𝑤)) | |
10 | 5, 6, 3, 7, 8, 9 | iseqf1olemmo 10427 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 = 𝑤) |
11 | 10 | ex 114 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
12 | 11 | ralrimivva 2548 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
13 | dff13 5736 | . . 3 ⊢ (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤))) | |
14 | 4, 12, 13 | sylanbrc 414 | . 2 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
15 | elfzel1 9959 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
16 | 1, 15 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
17 | elfzel2 9958 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
18 | 1, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 16, 18 | fzfigd 10366 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
20 | enrefg 6730 | . . . 4 ⊢ ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁)) | |
21 | 19, 20 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁)) |
22 | f1finf1o 6912 | . . 3 ⊢ (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | |
23 | 21, 19, 22 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
24 | 14, 23 | mpbid 146 | 1 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ifcif 3520 class class class wbr 3982 ↦ cmpt 4043 ◡ccnv 4603 ⟶wf 5184 –1-1→wf1 5185 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 ≈ cen 6704 Fincfn 6706 1c1 7754 − cmin 8069 ℤcz 9191 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: seq3f1olemqsumkj 10433 seq3f1olemqsumk 10434 seq3f1olemstep 10436 |
Copyright terms: Public domain | W3C validator |