ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o GIF version

Theorem iseqf1olemqf1o 10615
Description: Lemma for seq3f1o 10626. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
Assertion
Ref Expression
iseqf1olemqf1o (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Distinct variable groups:   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁   𝜑,𝑢
Allowed substitution hint:   𝑄(𝑢)

Proof of Theorem iseqf1olemqf1o
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 iseqf1olemqf.j . . . 4 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
3 iseqf1olemqf.q . . . 4 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
41, 2, 3iseqf1olemqf 10613 . . 3 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
51ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐾 ∈ (𝑀...𝑁))
62ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
7 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 ∈ (𝑀...𝑁))
8 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑤 ∈ (𝑀...𝑁))
9 simpr 110 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → (𝑄𝑣) = (𝑄𝑤))
105, 6, 3, 7, 8, 9iseqf1olemmo 10614 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄𝑣) = (𝑄𝑤)) → 𝑣 = 𝑤)
1110ex 115 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
1211ralrimivva 2579 . . 3 (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤))
13 dff13 5818 . . 3 (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄𝑣) = (𝑄𝑤) → 𝑣 = 𝑤)))
144, 12, 13sylanbrc 417 . 2 (𝜑𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁))
15 elfzel1 10116 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
161, 15syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
17 elfzel2 10115 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
181, 17syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
1916, 18fzfigd 10540 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
20 enrefg 6832 . . . 4 ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁))
2119, 20syl 14 . . 3 (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁))
22 f1finf1o 7022 . . 3 (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2321, 19, 22syl2anc 411 . 2 (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)))
2414, 23mpbid 147 1 (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  ifcif 3562   class class class wbr 4034  cmpt 4095  ccnv 4663  wf 5255  1-1wf1 5256  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  cen 6806  Fincfn 6808  1c1 7897  cmin 8214  cz 9343  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  seq3f1olemqsumkj  10620  seq3f1olemqsumk  10621  seq3f1olemstep  10623
  Copyright terms: Public domain W3C validator