![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqf1olemqf1o | GIF version |
Description: Lemma for seq3f1o 10591. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqf.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqf.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqf.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
Ref | Expression |
---|---|
iseqf1olemqf1o | ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemqf.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
2 | iseqf1olemqf.j | . . . 4 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
3 | iseqf1olemqf.q | . . . 4 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
4 | 1, 2, 3 | iseqf1olemqf 10578 | . . 3 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
5 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐾 ∈ (𝑀...𝑁)) |
6 | 2 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
7 | simplrl 535 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 ∈ (𝑀...𝑁)) | |
8 | simplrr 536 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑤 ∈ (𝑀...𝑁)) | |
9 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → (𝑄‘𝑣) = (𝑄‘𝑤)) | |
10 | 5, 6, 3, 7, 8, 9 | iseqf1olemmo 10579 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) ∧ (𝑄‘𝑣) = (𝑄‘𝑤)) → 𝑣 = 𝑤) |
11 | 10 | ex 115 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 ∈ (𝑀...𝑁) ∧ 𝑤 ∈ (𝑀...𝑁))) → ((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
12 | 11 | ralrimivva 2576 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤)) |
13 | dff13 5812 | . . 3 ⊢ (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ (𝑄:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ ∀𝑣 ∈ (𝑀...𝑁)∀𝑤 ∈ (𝑀...𝑁)((𝑄‘𝑣) = (𝑄‘𝑤) → 𝑣 = 𝑤))) | |
14 | 4, 12, 13 | sylanbrc 417 | . 2 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
15 | elfzel1 10093 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
16 | 1, 15 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
17 | elfzel2 10092 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
18 | 1, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
19 | 16, 18 | fzfigd 10505 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
20 | enrefg 6820 | . . . 4 ⊢ ((𝑀...𝑁) ∈ Fin → (𝑀...𝑁) ≈ (𝑀...𝑁)) | |
21 | 19, 20 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ≈ (𝑀...𝑁)) |
22 | f1finf1o 7008 | . . 3 ⊢ (((𝑀...𝑁) ≈ (𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) | |
23 | 21, 19, 22 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑄:(𝑀...𝑁)–1-1→(𝑀...𝑁) ↔ 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))) |
24 | 14, 23 | mpbid 147 | 1 ⊢ (𝜑 → 𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ifcif 3558 class class class wbr 4030 ↦ cmpt 4091 ◡ccnv 4659 ⟶wf 5251 –1-1→wf1 5252 –1-1-onto→wf1o 5254 ‘cfv 5255 (class class class)co 5919 ≈ cen 6794 Fincfn 6796 1c1 7875 − cmin 8192 ℤcz 9320 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-er 6589 df-en 6797 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 |
This theorem is referenced by: seq3f1olemqsumkj 10585 seq3f1olemqsumk 10586 seq3f1olemstep 10588 |
Copyright terms: Public domain | W3C validator |