ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd1 GIF version

Theorem modqadd1 10306
Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
Hypotheses
Ref Expression
modqadd1.a (𝜑𝐴 ∈ ℚ)
modqadd1.b (𝜑𝐵 ∈ ℚ)
modqadd1.c (𝜑𝐶 ∈ ℚ)
modqadd1.dq (𝜑𝐷 ∈ ℚ)
modqadd1.dgt0 (𝜑 → 0 < 𝐷)
modqadd1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqadd1 (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))

Proof of Theorem modqadd1
StepHypRef Expression
1 modqadd1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqadd1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqadd1.dq . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqadd1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 10269 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1233 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqadd1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 10269 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1233 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2185 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5858 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
1210, 11syl6bi 162 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
13 qcn 9582 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
142, 13syl 14 . . . . . 6 (𝜑𝐴 ∈ ℂ)
15 modqadd1.c . . . . . . 7 (𝜑𝐶 ∈ ℚ)
16 qcn 9582 . . . . . . 7 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
1715, 16syl 14 . . . . . 6 (𝜑𝐶 ∈ ℂ)
18 qcn 9582 . . . . . . . 8 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
193, 18syl 14 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
204gt0ne0d 8420 . . . . . . . . . 10 (𝜑𝐷 ≠ 0)
21 qdivcl 9591 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
222, 3, 20, 21syl3anc 1233 . . . . . . . . 9 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2322flqcld 10222 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2423zcnd 9324 . . . . . . 7 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2519, 24mulcld 7929 . . . . . 6 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2614, 17, 25addsubd 8240 . . . . 5 (𝜑 → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
27 qcn 9582 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
287, 27syl 14 . . . . . 6 (𝜑𝐵 ∈ ℂ)
29 qdivcl 9591 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
307, 3, 20, 29syl3anc 1233 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3130flqcld 10222 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 9324 . . . . . . 7 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3319, 32mulcld 7929 . . . . . 6 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3428, 17, 33addsubd 8240 . . . . 5 (𝜑 → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3526, 34eqeq12d 2185 . . . 4 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
3612, 35sylibrd 168 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
37 oveq1 5858 . . . 4 (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷))
38 qaddcl 9583 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 + 𝐶) ∈ ℚ)
392, 15, 38syl2anc 409 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ ℚ)
40 modqcyc2 10305 . . . . . 6 ((((𝐴 + 𝐶) ∈ ℚ ∧ (⌊‘(𝐴 / 𝐷)) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4139, 23, 3, 4, 40syl22anc 1234 . . . . 5 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
42 qaddcl 9583 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 + 𝐶) ∈ ℚ)
437, 15, 42syl2anc 409 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ ℚ)
44 modqcyc2 10305 . . . . . 6 ((((𝐵 + 𝐶) ∈ ℚ ∧ (⌊‘(𝐵 / 𝐷)) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
4543, 31, 3, 4, 44syl22anc 1234 . . . . 5 (𝜑 → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
4641, 45eqeq12d 2185 . . . 4 (𝜑 → ((((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
4737, 46syl5ib 153 . . 3 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
4836, 47syld 45 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
491, 48mpd 13 1 (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3987  cfv 5196  (class class class)co 5851  cc 7761  0cc0 7763   + caddc 7766   · cmul 7768   < clt 7943  cmin 8079   / cdiv 8578  cz 9201  cq 9567  cfl 10213   mod cmo 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-n0 9125  df-z 9202  df-q 9568  df-rp 9600  df-fl 10215  df-mod 10268
This theorem is referenced by:  modqaddabs  10307  modqaddmod  10308  modqadd12d  10325  modqaddmulmod  10336  moddvds  11750  lgsvalmod  13675  lgsmod  13682  lgsne0  13694
  Copyright terms: Public domain W3C validator