ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqsubdir GIF version

Theorem modqsubdir 9688
Description: Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqsubdir (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))

Proof of Theorem modqsubdir
StepHypRef Expression
1 simpll 496 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℚ)
2 simprl 498 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℚ)
3 simprr 499 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐶)
41, 2, 3modqcld 9623 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) ∈ ℚ)
5 qre 9004 . . . 4 ((𝐴 mod 𝐶) ∈ ℚ → (𝐴 mod 𝐶) ∈ ℝ)
64, 5syl 14 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) ∈ ℝ)
7 simplr 497 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℚ)
87, 2, 3modqcld 9623 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) ∈ ℚ)
9 qre 9004 . . . 4 ((𝐵 mod 𝐶) ∈ ℚ → (𝐵 mod 𝐶) ∈ ℝ)
108, 9syl 14 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) ∈ ℝ)
116, 10subge0d 7911 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ (𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶)))
12 qsubcl 9017 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
1312adantr 270 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴𝐵) ∈ ℚ)
143gt0ne0d 7889 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
15 qdivcl 9022 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℚ)
161, 2, 14, 15syl3anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 / 𝐶) ∈ ℚ)
1716flqcld 9572 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐴 / 𝐶)) ∈ ℤ)
18 qdivcl 9022 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℚ)
197, 2, 14, 18syl3anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) ∈ ℚ)
2019flqcld 9572 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℤ)
2117, 20zsubcld 8768 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ)
22 modqcyc2 9655 . . . . . . 7 ((((𝐴𝐵) ∈ ℚ ∧ ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))) ∈ ℤ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
2313, 21, 2, 3, 22syl22anc 1171 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = ((𝐴𝐵) mod 𝐶))
24 qcn 9013 . . . . . . . . . 10 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
251, 24syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℂ)
26 qcn 9013 . . . . . . . . . 10 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
277, 26syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
28 zq 9005 . . . . . . . . . . . 12 ((⌊‘(𝐴 / 𝐶)) ∈ ℤ → (⌊‘(𝐴 / 𝐶)) ∈ ℚ)
2917, 28syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐴 / 𝐶)) ∈ ℚ)
30 qmulcl 9016 . . . . . . . . . . 11 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐴 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℚ)
312, 29, 30syl2anc 403 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℚ)
32 qcn 9013 . . . . . . . . . 10 ((𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
3331, 32syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐴 / 𝐶))) ∈ ℂ)
34 zq 9005 . . . . . . . . . . . 12 ((⌊‘(𝐵 / 𝐶)) ∈ ℤ → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
3520, 34syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℚ)
36 qmulcl 9016 . . . . . . . . . . 11 ((𝐶 ∈ ℚ ∧ (⌊‘(𝐵 / 𝐶)) ∈ ℚ) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
372, 35, 36syl2anc 403 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ)
38 qcn 9013 . . . . . . . . . 10 ((𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℚ → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
3937, 38syl 14 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
4025, 27, 33, 39sub4d 7744 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
41 qcn 9013 . . . . . . . . . . 11 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
422, 41syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
4317zcnd 8764 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐴 / 𝐶)) ∈ ℂ)
4420zcnd 8764 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
4542, 43, 44subdid 7794 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶)))) = ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
4645oveq2d 5606 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴𝐵) − ((𝐶 · (⌊‘(𝐴 / 𝐶))) − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
47 modqval 9619 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
481, 2, 3, 47syl3anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) = (𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))))
49 modqval 9619 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
507, 2, 3, 49syl3anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
5148, 50oveq12d 5608 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) = ((𝐴 − (𝐶 · (⌊‘(𝐴 / 𝐶)))) − (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
5240, 46, 513eqtr4d 2125 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
5352oveq1d 5605 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴𝐵) − (𝐶 · ((⌊‘(𝐴 / 𝐶)) − (⌊‘(𝐵 / 𝐶))))) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
5423, 53eqtr3d 2117 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
5554adantr 270 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶))
56 qsubcl 9017 . . . . . . 7 (((𝐴 mod 𝐶) ∈ ℚ ∧ (𝐵 mod 𝐶) ∈ ℚ) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ)
574, 8, 56syl2anc 403 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ)
5857adantr 270 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ)
592adantr 270 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 𝐶 ∈ ℚ)
60 simpr 108 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
616, 10resubcld 7761 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℝ)
62 qre 9004 . . . . . . . 8 (𝐶 ∈ ℚ → 𝐶 ∈ ℝ)
632, 62syl 14 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ)
64 modqge0 9627 . . . . . . . . 9 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → 0 ≤ (𝐵 mod 𝐶))
657, 2, 3, 64syl3anc 1170 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 ≤ (𝐵 mod 𝐶))
666, 10subge02d 7913 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (0 ≤ (𝐵 mod 𝐶) ↔ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶)))
6765, 66mpbid 145 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ≤ (𝐴 mod 𝐶))
68 modqlt 9628 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → (𝐴 mod 𝐶) < 𝐶)
691, 2, 3, 68syl3anc 1170 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) < 𝐶)
7061, 6, 63, 67, 69lelttrd 7510 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
7170adantr 270 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)
72 modqid 9644 . . . . 5 (((((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ∧ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) < 𝐶)) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7358, 59, 60, 71, 72syl22anc 1171 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → (((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7455, 73eqtrd 2115 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
75 modqge0 9627 . . . . . 6 (((𝐴𝐵) ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → 0 ≤ ((𝐴𝐵) mod 𝐶))
7613, 2, 3, 75syl3anc 1170 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 ≤ ((𝐴𝐵) mod 𝐶))
7776adantr 270 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴𝐵) mod 𝐶))
78 simpr 108 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
7977, 78breqtrd 3835 . . 3 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) ∧ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))) → 0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)))
8074, 79impbida 561 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (0 ≤ ((𝐴 mod 𝐶) − (𝐵 mod 𝐶)) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
8111, 80bitr3d 188 1 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wne 2249   class class class wbr 3811  cfv 4968  (class class class)co 5590  cc 7250  cr 7251  0cc0 7252   · cmul 7257   < clt 7424  cle 7425  cmin 7555   / cdiv 8036  cz 8645  cq 8998  cfl 9563   mod cmo 9617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364  ax-pre-mulext 7365  ax-arch 7366
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-po 4086  df-iso 4087  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-1st 5845  df-2nd 5846  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958  df-div 8037  df-inn 8316  df-n0 8565  df-z 8646  df-q 8999  df-rp 9029  df-fl 9565  df-mod 9618
This theorem is referenced by:  modqeqmodmin  9689
  Copyright terms: Public domain W3C validator