ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lesubadd2i GIF version

Theorem lesubadd2i 8137
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
Assertion
Ref Expression
lesubadd2i ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶))

Proof of Theorem lesubadd2i
StepHypRef Expression
1 lt2.1 . 2 𝐴 ∈ ℝ
2 lt2.2 . 2 𝐵 ∈ ℝ
3 lt2.3 . 2 𝐶 ∈ ℝ
4 lesubadd2 8064 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶)))
51, 2, 3, 4mp3an 1283 1 ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐵 + 𝐶))
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1448   class class class wbr 3875  (class class class)co 5706  cr 7499   + caddc 7503  cle 7673  cmin 7804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator