ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lesubaddi GIF version

Theorem lesubaddi 8236
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 30-Sep-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
Assertion
Ref Expression
lesubaddi ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵))

Proof of Theorem lesubaddi
StepHypRef Expression
1 lt2.1 . 2 𝐴 ∈ ℝ
2 lt2.2 . 2 𝐵 ∈ ℝ
3 lt2.3 . 2 𝐶 ∈ ℝ
4 lesubadd 8164 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵)))
51, 2, 3, 4mp3an 1300 1 ((𝐴𝐵) ≤ 𝐶𝐴 ≤ (𝐶 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1465   class class class wbr 3899  (class class class)co 5742  cr 7587   + caddc 7591  cle 7769  cmin 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904
This theorem is referenced by:  ege2le3  11304
  Copyright terms: Public domain W3C validator