| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspsnss2 | GIF version | ||
| Description: Comparable spans of singletons must have proportional vectors. (Contributed by NM, 7-Jun-2015.) |
| Ref | Expression |
|---|---|
| lspsnss2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnss2.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lspsnss2.k | ⊢ 𝐾 = (Base‘𝑆) |
| lspsnss2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsnss2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspsnss2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspsnss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lspsnss2 | ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2206 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | lspsnss2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lspsnss2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lspsnss2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 6 | 1, 2, 3 | lspsncl 14198 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 7 | 4, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 8 | lspsnss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 9 | 1, 2, 3, 4, 7, 8 | lspsnel5 14215 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))) |
| 10 | lspsnss2.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 11 | lspsnss2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 12 | lspsnss2.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | 10, 11, 1, 12, 3 | ellspsn 14223 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| 14 | 4, 5, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| 15 | 9, 14 | bitr3d 190 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ⊆ wss 3167 {csn 3634 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 Scalarcsca 12956 ·𝑠 cvsca 12957 LModclmod 14093 LSubSpclss 14158 LSpanclspn 14192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-mgp 13727 df-ur 13766 df-ring 13804 df-lmod 14095 df-lssm 14159 df-lsp 14193 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |