![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsnel5a | GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
Ref | Expression |
---|---|
lspsnel5a.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5a.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5a.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5a.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
lspsnel5a | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5a.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
2 | eqid 2189 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lspsnel5a.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspsnel5a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | lspsnel5a.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | lspsnel5a.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3 | lsselg 13674 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
8 | 5, 6, 1, 7 | syl3anc 1249 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
9 | 2, 3, 4, 5, 6, 8 | lspsnel5 13722 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
10 | 1, 9 | mpbid 147 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 {csn 3607 ‘cfv 5235 Basecbs 12511 LModclmod 13600 LSubSpclss 13665 LSpanclspn 13699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-ndx 12514 df-slot 12515 df-base 12517 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-lmod 13602 df-lssm 13666 df-lsp 13700 |
This theorem is referenced by: lssats2 13727 lspsn 13729 lspsnvsi 13731 |
Copyright terms: Public domain | W3C validator |