![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssvacl | GIF version |
Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssvacl.p | ⊢ + = (+g‘𝑊) |
lssvacl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssvacl | ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | |
2 | simplr 528 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
3 | simprl 529 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝑈) | |
4 | eqid 2189 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
5 | lssvacl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
6 | 4, 5 | lsselg 13677 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
7 | 1, 2, 3, 6 | syl3anc 1249 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ (Base‘𝑊)) |
8 | eqid 2189 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
9 | eqid 2189 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
10 | eqid 2189 | . . . . 5 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
11 | 4, 8, 9, 10 | lmodvs1 13632 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
12 | 1, 7, 11 | syl2anc 411 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
13 | 12 | oveq1d 5911 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) = (𝑋 + 𝑌)) |
14 | eqid 2189 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
15 | 8, 14, 10 | lmod1cl 13631 | . . . 4 ⊢ (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
16 | 15 | ad2antrr 488 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
17 | simprr 531 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | |
18 | lssvacl.p | . . . 4 ⊢ + = (+g‘𝑊) | |
19 | 8, 14, 18, 9, 5 | lssclg 13680 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) ∈ 𝑈) |
20 | 1, 2, 16, 3, 17, 19 | syl113anc 1261 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) ∈ 𝑈) |
21 | 13, 20 | eqeltrrd 2267 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5896 Basecbs 12512 +gcplusg 12589 Scalarcsca 12592 ·𝑠 cvsca 12593 1rcur 13313 LModclmod 13603 LSubSpclss 13668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-i2m1 7946 ax-0lt1 7947 ax-0id 7949 ax-rnegex 7950 ax-pre-ltirr 7953 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-ltxr 8027 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-5 9011 df-6 9012 df-ndx 12515 df-slot 12516 df-base 12518 df-sets 12519 df-plusg 12602 df-mulr 12603 df-sca 12605 df-vsca 12606 df-0g 12763 df-mgm 12832 df-sgrp 12865 df-mnd 12878 df-mgp 13275 df-ur 13314 df-ring 13352 df-lmod 13605 df-lssm 13669 |
This theorem is referenced by: lsssubg 13693 lspprvacl 13729 lidlacl 13800 |
Copyright terms: Public domain | W3C validator |