| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssvacl | GIF version | ||
| Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lssvacl.p | ⊢ + = (+g‘𝑊) |
| lssvacl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssvacl | ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | |
| 2 | simplr 528 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
| 3 | simprl 529 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝑈) | |
| 4 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | lssvacl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 6 | 4, 5 | lsselg 14193 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 7 | 1, 2, 3, 6 | syl3anc 1250 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ (Base‘𝑊)) |
| 8 | eqid 2206 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 9 | eqid 2206 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 10 | eqid 2206 | . . . . 5 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 11 | 4, 8, 9, 10 | lmodvs1 14148 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
| 12 | 1, 7, 11 | syl2anc 411 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) = 𝑋) |
| 13 | 12 | oveq1d 5971 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) = (𝑋 + 𝑌)) |
| 14 | eqid 2206 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 15 | 8, 14, 10 | lmod1cl 14147 | . . . 4 ⊢ (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
| 16 | 15 | ad2antrr 488 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
| 17 | simprr 531 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | |
| 18 | lssvacl.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 19 | 8, 14, 18, 9, 5 | lssclg 14196 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) ∈ 𝑈) |
| 20 | 1, 2, 16, 3, 17, 19 | syl113anc 1262 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑋) + 𝑌) ∈ 𝑈) |
| 21 | 13, 20 | eqeltrrd 2284 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 +gcplusg 12979 Scalarcsca 12982 ·𝑠 cvsca 12983 1rcur 13791 LModclmod 14119 LSubSpclss 14184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-sca 12995 df-vsca 12996 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-mgp 13753 df-ur 13792 df-ring 13830 df-lmod 14121 df-lssm 14185 |
| This theorem is referenced by: lsssubg 14209 lspprvacl 14245 lidlacl 14316 |
| Copyright terms: Public domain | W3C validator |