| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringinvg | GIF version | ||
| Description: The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringinvg | ⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9359 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 2 | 1 | negidd 8355 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 + -𝐴) = 0) |
| 3 | zringgrp 14275 | . . . 4 ⊢ ℤring ∈ Grp | |
| 4 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℤ) | |
| 5 | znegcl 9385 | . . . 4 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
| 6 | zringbas 14276 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 7 | zringplusg 14277 | . . . . 5 ⊢ + = (+g‘ℤring) | |
| 8 | zring0 14280 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
| 9 | eqid 2204 | . . . . 5 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 10 | 6, 7, 8, 9 | grpinvid1 13302 | . . . 4 ⊢ ((ℤring ∈ Grp ∧ 𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) → (((invg‘ℤring)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0)) |
| 11 | 3, 4, 5, 10 | mp3an2i 1354 | . . 3 ⊢ (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) = -𝐴 ↔ (𝐴 + -𝐴) = 0)) |
| 12 | 2, 11 | mpbird 167 | . 2 ⊢ (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴) |
| 13 | 12 | eqcomd 2210 | 1 ⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 0cc0 7907 + caddc 7910 -cneg 8226 ℤcz 9354 Grpcgrp 13250 invgcminusg 13251 ℤringczring 14270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-addf 8029 ax-mulf 8030 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-z 9355 df-dec 9487 df-uz 9631 df-rp 9758 df-fz 10113 df-cj 11072 df-abs 11229 df-struct 12753 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-mulr 12842 df-starv 12843 df-tset 12847 df-ple 12848 df-ds 12850 df-unif 12851 df-0g 13008 df-topgen 13010 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-subg 13424 df-cmn 13540 df-mgp 13601 df-ur 13640 df-ring 13678 df-cring 13679 df-subrg 13899 df-bl 14226 df-mopn 14227 df-fg 14229 df-metu 14230 df-cnfld 14237 df-zring 14271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |