ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpsr GIF version

Theorem fnpsr 14639
Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
Assertion
Ref Expression
fnpsr mPwSer Fn (V × V)

Proof of Theorem fnpsr
Dummy variables 𝑏 𝑑 𝑓 𝑔 𝑖 𝑘 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14635 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
2 fnmap 6810 . . . . 5 𝑚 Fn (V × V)
3 nn0ex 9383 . . . . 5 0 ∈ V
4 vex 2802 . . . . 5 𝑖 ∈ V
5 fnovex 6040 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝑖 ∈ V) → (ℕ0𝑚 𝑖) ∈ V)
62, 3, 4, 5mp3an 1371 . . . 4 (ℕ0𝑚 𝑖) ∈ V
76rabex 4228 . . 3 { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∈ V
8 basfn 13099 . . . . . 6 Base Fn V
9 vex 2802 . . . . . 6 𝑟 ∈ V
10 funfvex 5646 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
1110funfni 5423 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
128, 9, 11mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
13 vex 2802 . . . . 5 𝑑 ∈ V
14 fnovex 6040 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ (Base‘𝑟) ∈ V ∧ 𝑑 ∈ V) → ((Base‘𝑟) ↑𝑚 𝑑) ∈ V)
152, 12, 13, 14mp3an 1371 . . . 4 ((Base‘𝑟) ↑𝑚 𝑑) ∈ V
16 basendxnn 13096 . . . . . . 7 (Base‘ndx) ∈ ℕ
17 vex 2802 . . . . . . 7 𝑏 ∈ V
18 opexg 4314 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ 𝑏 ∈ V) → ⟨(Base‘ndx), 𝑏⟩ ∈ V)
1916, 17, 18mp2an 426 . . . . . 6 ⟨(Base‘ndx), 𝑏⟩ ∈ V
20 plusgndxnn 13152 . . . . . . 7 (+g‘ndx) ∈ ℕ
2117a1i 9 . . . . . . . . 9 (⊤ → 𝑏 ∈ V)
2221, 21ofmresex 6288 . . . . . . . 8 (⊤ → ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) ∈ V)
2322mptru 1404 . . . . . . 7 ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) ∈ V
24 opexg 4314 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) ∈ V) → ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ ∈ V)
2520, 23, 24mp2an 426 . . . . . 6 ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ ∈ V
26 mulrslid 13173 . . . . . . . . 9 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2726simpri 113 . . . . . . . 8 (.r‘ndx) ∈ ℕ
2827elexi 2812 . . . . . . 7 (.r‘ndx) ∈ V
2917, 17mpoex 6366 . . . . . . 7 (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V
3028, 29opex 4315 . . . . . 6 ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩ ∈ V
31 tpexg 4535 . . . . . 6 ((⟨(Base‘ndx), 𝑏⟩ ∈ V ∧ ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ ∈ V ∧ ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩ ∈ V) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∈ V)
3219, 25, 30, 31mp3an 1371 . . . . 5 {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∈ V
33 scaslid 13194 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3433simpri 113 . . . . . . . 8 (Scalar‘ndx) ∈ ℕ
3534elexi 2812 . . . . . . 7 (Scalar‘ndx) ∈ V
3635, 9opex 4315 . . . . . 6 ⟨(Scalar‘ndx), 𝑟⟩ ∈ V
37 vscaslid 13204 . . . . . . . . 9 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
3837simpri 113 . . . . . . . 8 ( ·𝑠 ‘ndx) ∈ ℕ
3938elexi 2812 . . . . . . 7 ( ·𝑠 ‘ndx) ∈ V
4012, 17mpoex 6366 . . . . . . 7 (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓)) ∈ V
4139, 40opex 4315 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩ ∈ V
42 tsetndxnn 13230 . . . . . . . 8 (TopSet‘ndx) ∈ ℕ
4342elexi 2812 . . . . . . 7 (TopSet‘ndx) ∈ V
44 topnfn 13285 . . . . . . . . . . 11 TopOpen Fn V
45 funfvex 5646 . . . . . . . . . . . 12 ((Fun TopOpen ∧ 𝑟 ∈ dom TopOpen) → (TopOpen‘𝑟) ∈ V)
4645funfni 5423 . . . . . . . . . . 11 ((TopOpen Fn V ∧ 𝑟 ∈ V) → (TopOpen‘𝑟) ∈ V)
4744, 9, 46mp2an 426 . . . . . . . . . 10 (TopOpen‘𝑟) ∈ V
4847snex 4269 . . . . . . . . 9 {(TopOpen‘𝑟)} ∈ V
4913, 48xpex 4834 . . . . . . . 8 (𝑑 × {(TopOpen‘𝑟)}) ∈ V
50 ptex 13305 . . . . . . . 8 ((𝑑 × {(TopOpen‘𝑟)}) ∈ V → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) ∈ V)
5149, 50ax-mp 5 . . . . . . 7 (∏t‘(𝑑 × {(TopOpen‘𝑟)})) ∈ V
5243, 51opex 4315 . . . . . 6 ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩ ∈ V
53 tpexg 4535 . . . . . 6 ((⟨(Scalar‘ndx), 𝑟⟩ ∈ V ∧ ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩ ∈ V ∧ ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩ ∈ V) → {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩} ∈ V)
5436, 41, 52, 53mp3an 1371 . . . . 5 {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩} ∈ V
5532, 54unex 4532 . . . 4 ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) ∈ V
5615, 55csbexa 4213 . . 3 ((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) ∈ V
577, 56csbexa 4213 . 2 { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) ∈ V
581, 57fnmpoi 6355 1 mPwSer Fn (V × V)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wtru 1396  wcel 2200  {crab 2512  Vcvv 2799  csb 3124  cun 3195  {csn 3666  {ctp 3668  cop 3669   class class class wbr 4083  cmpt 4145   × cxp 4717  ccnv 4718  cres 4721  cima 4722   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  𝑓 cof 6222  𝑟 cofr 6223  𝑚 cmap 6803  Fincfn 6895  cle 8190  cmin 8325  cn 9118  0cn0 9377  ndxcnx 13037  Slot cslot 13039  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  TopSetcts 13124  TopOpenctopn 13281  tcpt 13296   Σg cgsu 13298   mPwSer cmps 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-psr 14635
This theorem is referenced by:  psrelbas  14647  psrplusgg  14650  psradd  14651  psraddcl  14652  mplvalcoe  14662  mplbascoe  14663  fnmpl  14665  mplplusgg  14675
  Copyright terms: Public domain W3C validator