ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpsr GIF version

Theorem fnpsr 14297
Description: The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
Assertion
Ref Expression
fnpsr mPwSer Fn (V × V)

Proof of Theorem fnpsr
Dummy variables 𝑏 𝑑 𝑓 𝑔 𝑖 𝑘 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psr 14294 . 2 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
2 fnmap 6723 . . . . 5 𝑚 Fn (V × V)
3 nn0ex 9272 . . . . 5 0 ∈ V
4 vex 2766 . . . . 5 𝑖 ∈ V
5 fnovex 5958 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝑖 ∈ V) → (ℕ0𝑚 𝑖) ∈ V)
62, 3, 4, 5mp3an 1348 . . . 4 (ℕ0𝑚 𝑖) ∈ V
76rabex 4178 . . 3 { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∈ V
8 basfn 12761 . . . . . 6 Base Fn V
9 vex 2766 . . . . . 6 𝑟 ∈ V
10 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
1110funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
128, 9, 11mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
13 vex 2766 . . . . 5 𝑑 ∈ V
14 fnovex 5958 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ (Base‘𝑟) ∈ V ∧ 𝑑 ∈ V) → ((Base‘𝑟) ↑𝑚 𝑑) ∈ V)
152, 12, 13, 14mp3an 1348 . . . 4 ((Base‘𝑟) ↑𝑚 𝑑) ∈ V
16 basendxnn 12759 . . . . . . 7 (Base‘ndx) ∈ ℕ
17 vex 2766 . . . . . . 7 𝑏 ∈ V
18 opexg 4262 . . . . . . 7 (((Base‘ndx) ∈ ℕ ∧ 𝑏 ∈ V) → ⟨(Base‘ndx), 𝑏⟩ ∈ V)
1916, 17, 18mp2an 426 . . . . . 6 ⟨(Base‘ndx), 𝑏⟩ ∈ V
20 plusgndxnn 12814 . . . . . . 7 (+g‘ndx) ∈ ℕ
2117a1i 9 . . . . . . . . 9 (⊤ → 𝑏 ∈ V)
2221, 21ofmresex 6203 . . . . . . . 8 (⊤ → ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) ∈ V)
2322mptru 1373 . . . . . . 7 ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) ∈ V
24 opexg 4262 . . . . . . 7 (((+g‘ndx) ∈ ℕ ∧ ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) ∈ V) → ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ ∈ V)
2520, 23, 24mp2an 426 . . . . . 6 ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ ∈ V
26 mulrslid 12834 . . . . . . . . 9 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2726simpri 113 . . . . . . . 8 (.r‘ndx) ∈ ℕ
2827elexi 2775 . . . . . . 7 (.r‘ndx) ∈ V
2917, 17mpoex 6281 . . . . . . 7 (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥))))))) ∈ V
3028, 29opex 4263 . . . . . 6 ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩ ∈ V
31 tpexg 4480 . . . . . 6 ((⟨(Base‘ndx), 𝑏⟩ ∈ V ∧ ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ ∈ V ∧ ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩ ∈ V) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∈ V)
3219, 25, 30, 31mp3an 1348 . . . . 5 {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∈ V
33 scaslid 12855 . . . . . . . . 9 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3433simpri 113 . . . . . . . 8 (Scalar‘ndx) ∈ ℕ
3534elexi 2775 . . . . . . 7 (Scalar‘ndx) ∈ V
3635, 9opex 4263 . . . . . 6 ⟨(Scalar‘ndx), 𝑟⟩ ∈ V
37 vscaslid 12865 . . . . . . . . 9 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
3837simpri 113 . . . . . . . 8 ( ·𝑠 ‘ndx) ∈ ℕ
3938elexi 2775 . . . . . . 7 ( ·𝑠 ‘ndx) ∈ V
4012, 17mpoex 6281 . . . . . . 7 (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓)) ∈ V
4139, 40opex 4263 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩ ∈ V
42 tsetndxnn 12891 . . . . . . . 8 (TopSet‘ndx) ∈ ℕ
4342elexi 2775 . . . . . . 7 (TopSet‘ndx) ∈ V
44 topnfn 12946 . . . . . . . . . . 11 TopOpen Fn V
45 funfvex 5578 . . . . . . . . . . . 12 ((Fun TopOpen ∧ 𝑟 ∈ dom TopOpen) → (TopOpen‘𝑟) ∈ V)
4645funfni 5361 . . . . . . . . . . 11 ((TopOpen Fn V ∧ 𝑟 ∈ V) → (TopOpen‘𝑟) ∈ V)
4744, 9, 46mp2an 426 . . . . . . . . . 10 (TopOpen‘𝑟) ∈ V
4847snex 4219 . . . . . . . . 9 {(TopOpen‘𝑟)} ∈ V
4913, 48xpex 4779 . . . . . . . 8 (𝑑 × {(TopOpen‘𝑟)}) ∈ V
50 ptex 12966 . . . . . . . 8 ((𝑑 × {(TopOpen‘𝑟)}) ∈ V → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) ∈ V)
5149, 50ax-mp 5 . . . . . . 7 (∏t‘(𝑑 × {(TopOpen‘𝑟)})) ∈ V
5243, 51opex 4263 . . . . . 6 ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩ ∈ V
53 tpexg 4480 . . . . . 6 ((⟨(Scalar‘ndx), 𝑟⟩ ∈ V ∧ ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩ ∈ V ∧ ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩ ∈ V) → {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩} ∈ V)
5436, 41, 52, 53mp3an 1348 . . . . 5 {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩} ∈ V
5532, 54unex 4477 . . . 4 ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) ∈ V
5615, 55csbexa 4163 . . 3 ((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) ∈ V
577, 56csbexa 4163 . 2 { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) ∈ V
581, 57fnmpoi 6270 1 mPwSer Fn (V × V)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wtru 1365  wcel 2167  {crab 2479  Vcvv 2763  csb 3084  cun 3155  {csn 3623  {ctp 3625  cop 3626   class class class wbr 4034  cmpt 4095   × cxp 4662  ccnv 4663  cres 4666  cima 4667   Fn wfn 5254  cfv 5259  (class class class)co 5925  cmpo 5927  𝑓 cof 6137  𝑟 cofr 6138  𝑚 cmap 6716  Fincfn 6808  cle 8079  cmin 8214  cn 9007  0cn0 9266  ndxcnx 12700  Slot cslot 12702  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  Scalarcsca 12783   ·𝑠 cvsca 12784  TopSetcts 12786  TopOpenctopn 12942  tcpt 12957   Σg cgsu 12959   mPwSer cmps 14293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-i2m1 8001
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-tset 12799  df-rest 12943  df-topn 12944  df-topgen 12962  df-pt 12963  df-psr 14294
This theorem is referenced by:  psrelbas  14304  psrplusgg  14306  psradd  14307  psraddcl  14308
  Copyright terms: Public domain W3C validator