Step | Hyp | Ref
| Expression |
1 | | df-psr 14150 |
. 2
⊢ mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
2 | | fnmap 6709 |
. . . . 5
⊢
↑𝑚 Fn (V × V) |
3 | | nn0ex 9246 |
. . . . 5
⊢
ℕ0 ∈ V |
4 | | vex 2763 |
. . . . 5
⊢ 𝑖 ∈ V |
5 | | fnovex 5951 |
. . . . 5
⊢ ((
↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V
∧ 𝑖 ∈ V) →
(ℕ0 ↑𝑚 𝑖) ∈ V) |
6 | 2, 3, 4, 5 | mp3an 1348 |
. . . 4
⊢
(ℕ0 ↑𝑚 𝑖) ∈ V |
7 | 6 | rabex 4173 |
. . 3
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
8 | | basfn 12676 |
. . . . . 6
⊢ Base Fn
V |
9 | | vex 2763 |
. . . . . 6
⊢ 𝑟 ∈ V |
10 | | funfvex 5571 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
11 | 10 | funfni 5354 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
12 | 8, 9, 11 | mp2an 426 |
. . . . 5
⊢
(Base‘𝑟)
∈ V |
13 | | vex 2763 |
. . . . 5
⊢ 𝑑 ∈ V |
14 | | fnovex 5951 |
. . . . 5
⊢ ((
↑𝑚 Fn (V × V) ∧ (Base‘𝑟) ∈ V ∧ 𝑑 ∈ V) →
((Base‘𝑟)
↑𝑚 𝑑) ∈ V) |
15 | 2, 12, 13, 14 | mp3an 1348 |
. . . 4
⊢
((Base‘𝑟)
↑𝑚 𝑑) ∈ V |
16 | | basendxnn 12674 |
. . . . . . 7
⊢
(Base‘ndx) ∈ ℕ |
17 | | vex 2763 |
. . . . . . 7
⊢ 𝑏 ∈ V |
18 | | opexg 4257 |
. . . . . . 7
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝑏 ∈ V) → 〈(Base‘ndx),
𝑏〉 ∈
V) |
19 | 16, 17, 18 | mp2an 426 |
. . . . . 6
⊢
〈(Base‘ndx), 𝑏〉 ∈ V |
20 | | plusgndxnn 12729 |
. . . . . . 7
⊢
(+g‘ndx) ∈ ℕ |
21 | 17 | a1i 9 |
. . . . . . . . 9
⊢ (⊤
→ 𝑏 ∈
V) |
22 | 21, 21 | ofmresex 6189 |
. . . . . . . 8
⊢ (⊤
→ ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏)) ∈ V) |
23 | 22 | mptru 1373 |
. . . . . . 7
⊢ (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏)) ∈ V |
24 | | opexg 4257 |
. . . . . . 7
⊢
(((+g‘ndx) ∈ ℕ ∧ (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏)) ∈ V) →
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉 ∈
V) |
25 | 20, 23, 24 | mp2an 426 |
. . . . . 6
⊢
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉 ∈
V |
26 | | mulrslid 12749 |
. . . . . . . . 9
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
27 | 26 | simpri 113 |
. . . . . . . 8
⊢
(.r‘ndx) ∈ ℕ |
28 | 27 | elexi 2772 |
. . . . . . 7
⊢
(.r‘ndx) ∈ V |
29 | 17, 17 | mpoex 6267 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) ∈
V |
30 | 28, 29 | opex 4258 |
. . . . . 6
⊢
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉 ∈
V |
31 | | tpexg 4475 |
. . . . . 6
⊢
((〈(Base‘ndx), 𝑏〉 ∈ V ∧
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉 ∈ V ∧
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉 ∈ V) →
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∈
V) |
32 | 19, 25, 30, 31 | mp3an 1348 |
. . . . 5
⊢
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∈
V |
33 | | scaslid 12770 |
. . . . . . . . 9
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
34 | 33 | simpri 113 |
. . . . . . . 8
⊢
(Scalar‘ndx) ∈ ℕ |
35 | 34 | elexi 2772 |
. . . . . . 7
⊢
(Scalar‘ndx) ∈ V |
36 | 35, 9 | opex 4258 |
. . . . . 6
⊢
〈(Scalar‘ndx), 𝑟〉 ∈ V |
37 | | vscaslid 12780 |
. . . . . . . . 9
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
38 | 37 | simpri 113 |
. . . . . . . 8
⊢ (
·𝑠 ‘ndx) ∈ ℕ |
39 | 38 | elexi 2772 |
. . . . . . 7
⊢ (
·𝑠 ‘ndx) ∈ V |
40 | 12, 17 | mpoex 6267 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) ∈ V |
41 | 39, 40 | opex 4258 |
. . . . . 6
⊢ 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉 ∈ V |
42 | | tsetndxnn 12806 |
. . . . . . . 8
⊢
(TopSet‘ndx) ∈ ℕ |
43 | 42 | elexi 2772 |
. . . . . . 7
⊢
(TopSet‘ndx) ∈ V |
44 | | topnfn 12855 |
. . . . . . . . . . 11
⊢ TopOpen
Fn V |
45 | | funfvex 5571 |
. . . . . . . . . . . 12
⊢ ((Fun
TopOpen ∧ 𝑟 ∈ dom
TopOpen) → (TopOpen‘𝑟) ∈ V) |
46 | 45 | funfni 5354 |
. . . . . . . . . . 11
⊢ ((TopOpen
Fn V ∧ 𝑟 ∈ V)
→ (TopOpen‘𝑟)
∈ V) |
47 | 44, 9, 46 | mp2an 426 |
. . . . . . . . . 10
⊢
(TopOpen‘𝑟)
∈ V |
48 | 47 | snex 4214 |
. . . . . . . . 9
⊢
{(TopOpen‘𝑟)}
∈ V |
49 | 13, 48 | xpex 4774 |
. . . . . . . 8
⊢ (𝑑 × {(TopOpen‘𝑟)}) ∈ V |
50 | | ptex 12875 |
. . . . . . . 8
⊢ ((𝑑 × {(TopOpen‘𝑟)}) ∈ V →
(∏t‘(𝑑 × {(TopOpen‘𝑟)})) ∈ V) |
51 | 49, 50 | ax-mp 5 |
. . . . . . 7
⊢
(∏t‘(𝑑 × {(TopOpen‘𝑟)})) ∈ V |
52 | 43, 51 | opex 4258 |
. . . . . 6
⊢
〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 ∈ V |
53 | | tpexg 4475 |
. . . . . 6
⊢
((〈(Scalar‘ndx), 𝑟〉 ∈ V ∧ 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉 ∈ V ∧
〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 ∈ V) →
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} ∈ V) |
54 | 36, 41, 52, 53 | mp3an 1348 |
. . . . 5
⊢
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} ∈ V |
55 | 32, 54 | unex 4472 |
. . . 4
⊢
({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) ∈ V |
56 | 15, 55 | csbexa 4158 |
. . 3
⊢
⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) ∈ V |
57 | 7, 56 | csbexa 4158 |
. 2
⊢
⦋{ℎ
∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) ∈ V |
58 | 1, 57 | fnmpoi 6257 |
1
⊢ mPwSer
Fn (V × V) |