ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfctlemfo GIF version

Theorem nninfctlemfo 12180
Description: Lemma for nninfct 12181. (Contributed by Jim Kingdon, 10-Jul-2025.)
Hypotheses
Ref Expression
nninfct.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
nninfct.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
nninfct.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
nninfctlemfo (ω ∈ Omni → 𝐼:ℕ0*onto→ℕ)
Distinct variable group:   𝑖,𝐺,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem nninfctlemfo
Dummy variables 𝑘 𝑚 𝑧 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfct.g . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 nninfct.f . . . 4 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
3 nninfct.i . . . 4 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
41, 2, 3fxnn0nninf 10513 . . 3 𝐼:ℕ0*⟶ℕ
54a1i 9 . 2 (ω ∈ Omni → 𝐼:ℕ0*⟶ℕ)
6 ssrab2 3265 . . . . . . . . 9 {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅} ⊆ (ℤ‘0)
7 nn0uz 9630 . . . . . . . . . 10 0 = (ℤ‘0)
8 nn0ssxnn0 9309 . . . . . . . . . 10 0 ⊆ ℕ0*
97, 8eqsstrri 3213 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0*
106, 9sstri 3189 . . . . . . . 8 {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅} ⊆ ℕ0*
11 0zd 9332 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 0 ∈ ℤ)
12 eqid 2193 . . . . . . . . 9 {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅} = {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}
13 fveq2 5555 . . . . . . . . . . 11 (𝑚 = (𝐺𝑗) → (𝐺𝑚) = (𝐺‘(𝐺𝑗)))
1413fveqeq2d 5563 . . . . . . . . . 10 (𝑚 = (𝐺𝑗) → ((𝑦‘(𝐺𝑚)) = ∅ ↔ (𝑦‘(𝐺‘(𝐺𝑗))) = ∅))
15 simprl 529 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑗 ∈ ω)
1611, 1, 15frec2uzuzd 10476 . . . . . . . . . 10 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺𝑗) ∈ (ℤ‘0))
1711, 1frec2uzf1od 10480 . . . . . . . . . . . . 13 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐺:ω–1-1-onto→(ℤ‘0))
18 f1ocnvfv1 5821 . . . . . . . . . . . . 13 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑗 ∈ ω) → (𝐺‘(𝐺𝑗)) = 𝑗)
1917, 15, 18syl2anc 411 . . . . . . . . . . . 12 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺‘(𝐺𝑗)) = 𝑗)
2019fveq2d 5559 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦‘(𝐺‘(𝐺𝑗))) = (𝑦𝑗))
21 simprr 531 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦𝑗) = ∅)
2220, 21eqtrd 2226 . . . . . . . . . 10 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦‘(𝐺‘(𝐺𝑗))) = ∅)
2314, 16, 22elrabd 2919 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺𝑗) ∈ {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅})
24 nninff 7183 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ𝑦:ω⟶2o)
25 2ssom 6579 . . . . . . . . . . . . . 14 2o ⊆ ω
2625a1i 9 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 2o ⊆ ω)
2724, 26fssd 5417 . . . . . . . . . . . 12 (𝑦 ∈ ℕ𝑦:ω⟶ω)
2827ad3antlr 493 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → 𝑦:ω⟶ω)
29 elfzuz 10090 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝐺𝑗)) → 𝑚 ∈ (ℤ‘0))
30 f1ocnvdm 5825 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
3117, 29, 30syl2an 289 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → (𝐺𝑚) ∈ ω)
3228, 31ffvelcdmd 5695 . . . . . . . . . 10 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → (𝑦‘(𝐺𝑚)) ∈ ω)
33 peano1 4627 . . . . . . . . . 10 ∅ ∈ ω
34 nndceq 6554 . . . . . . . . . 10 (((𝑦‘(𝐺𝑚)) ∈ ω ∧ ∅ ∈ ω) → DECID (𝑦‘(𝐺𝑚)) = ∅)
3532, 33, 34sylancl 413 . . . . . . . . 9 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → DECID (𝑦‘(𝐺𝑚)) = ∅)
3611, 12, 23, 35infssuzcldc 12091 . . . . . . . 8 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅})
3710, 36sselid 3178 . . . . . . 7 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0*)
3824adantl 277 . . . . . . . . . 10 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → 𝑦:ω⟶2o)
3938adantr 276 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑦:ω⟶2o)
4039ffnd 5405 . . . . . . . 8 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑦 Fn ω)
414a1i 9 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐼:ℕ0*⟶ℕ)
4241, 37ffvelcdmd 5695 . . . . . . . . . 10 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ℕ)
43 nninff 7183 . . . . . . . . . 10 ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ℕ → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )):ω⟶2o)
4442, 43syl 14 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )):ω⟶2o)
4544ffnd 5405 . . . . . . . 8 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) Fn ω)
46 2fveq3 5560 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑦‘(𝐺𝑛)) = (𝑦‘(𝐺𝑚)))
4746eqeq1d 2202 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑦‘(𝐺𝑛)) = ∅ ↔ (𝑦‘(𝐺𝑚)) = ∅))
4847cbvrabv 2759 . . . . . . . . . . . . 13 {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} = {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}
4948infeq1i 7074 . . . . . . . . . . . 12 inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )
5049fveq2i 5558 . . . . . . . . . . 11 (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))
5150eleq2i 2260 . . . . . . . . . 10 (𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
52 simpr 110 . . . . . . . . . . . . 13 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )))
5352, 51sylib 122 . . . . . . . . . . . 12 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
5453iftrued 3565 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) = 1o)
553fveq1i 5556 . . . . . . . . . . . . . . . . 17 (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))
566, 36sselid 3178 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0))
5756, 7eleqtrrdi 2287 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0)
5857nn0nepnfd 9316 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ≠ +∞)
5958necomd 2450 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → +∞ ≠ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))
60 fvunsng 5753 . . . . . . . . . . . . . . . . . 18 ((inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0 ∧ +∞ ≠ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
6157, 59, 60syl2anc 411 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
6255, 61eqtrid 2238 . . . . . . . . . . . . . . . 16 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
63 dff1o4 5509 . . . . . . . . . . . . . . . . . . 19 (𝐺:ω–1-1-onto→(ℤ‘0) ↔ (𝐺 Fn ω ∧ 𝐺 Fn (ℤ‘0)))
6417, 63sylib 122 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺 Fn ω ∧ 𝐺 Fn (ℤ‘0)))
6564simprd 114 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐺 Fn (ℤ‘0))
66 fvco2 5627 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn (ℤ‘0) ∧ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0)) → ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (𝐹‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
6765, 56, 66syl2anc 411 . . . . . . . . . . . . . . . 16 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (𝐹‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
68 eleq2 2257 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝑖𝑛𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
6968ifbid 3579 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
7069mpteq2dv 4121 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)))
71 f1ocnvdm 5825 . . . . . . . . . . . . . . . . . 18 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0)) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
7217, 56, 71syl2anc 411 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
73 omex 4626 . . . . . . . . . . . . . . . . . . 19 ω ∈ V
7473mptex 5785 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)) ∈ V
7574a1i 9 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)) ∈ V)
762, 70, 72, 75fvmptd3 5652 . . . . . . . . . . . . . . . 16 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐹‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)))
7762, 67, 763eqtrd 2230 . . . . . . . . . . . . . . 15 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)))
7877fveq1d 5557 . . . . . . . . . . . . . 14 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))‘𝑘))
7978adantr 276 . . . . . . . . . . . . 13 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))‘𝑘))
80 eqid 2193 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
81 eleq1w 2254 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
8281ifbid 3579 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
83 simpr 110 . . . . . . . . . . . . . 14 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω)
84 1lt2o 6497 . . . . . . . . . . . . . . . 16 1o ∈ 2o
8584a1i 9 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 1o ∈ 2o)
86 0lt2o 6496 . . . . . . . . . . . . . . . 16 ∅ ∈ 2o
8786a1i 9 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ∅ ∈ 2o)
8872adantr 276 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
89 nndcel 6555 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω) → DECID 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
9083, 88, 89syl2anc 411 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → DECID 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
9185, 87, 90ifcldcd 3594 . . . . . . . . . . . . . 14 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) ∈ 2o)
9280, 82, 83, 91fvmptd3 5652 . . . . . . . . . . . . 13 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
9379, 92eqtrd 2226 . . . . . . . . . . . 12 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
9493adantr 276 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
95 0zd 9332 . . . . . . . . . . . . . . . . . 18 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 0 ∈ ℤ)
96 simplr 528 . . . . . . . . . . . . . . . . . 18 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ ω)
9750, 88eqeltrid 2280 . . . . . . . . . . . . . . . . . . 19 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ∈ ω)
9897adantr 276 . . . . . . . . . . . . . . . . . 18 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ∈ ω)
9995, 1, 96, 98frec2uzlt2d 10478 . . . . . . . . . . . . . . . . 17 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ↔ (𝐺𝑘) < (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )))))
10052, 99mpbid 147 . . . . . . . . . . . . . . . 16 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺𝑘) < (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))))
10117ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝐺:ω–1-1-onto→(ℤ‘0))
10249, 56eqeltrid 2280 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ (ℤ‘0))
103102ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ (ℤ‘0))
104 f1ocnvfv2 5822 . . . . . . . . . . . . . . . . 17 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ (ℤ‘0)) → (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
105101, 103, 104syl2anc 411 . . . . . . . . . . . . . . . 16 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
106100, 105breqtrd 4056 . . . . . . . . . . . . . . 15 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺𝑘) < inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
10749, 57eqeltrid 2280 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ ℕ0)
108107ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ ℕ0)
109108nn0red 9297 . . . . . . . . . . . . . . . . 17 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ ℝ)
110 elrabi 2914 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} → (𝐺𝑘) ∈ (ℤ‘0))
111110, 7eleqtrrdi 2287 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} → (𝐺𝑘) ∈ ℕ0)
112111adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → (𝐺𝑘) ∈ ℕ0)
113112nn0red 9297 . . . . . . . . . . . . . . . . 17 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → (𝐺𝑘) ∈ ℝ)
114 0zd 9332 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → 0 ∈ ℤ)
115 simpr 110 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅})
11639ad4antr 494 . . . . . . . . . . . . . . . . . . . . 21 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → 𝑦:ω⟶2o)
11717ad4antr 494 . . . . . . . . . . . . . . . . . . . . . 22 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → 𝐺:ω–1-1-onto→(ℤ‘0))
118 elfzuz 10090 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐺𝑘)) → 𝑚 ∈ (ℤ‘0))
119118adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → 𝑚 ∈ (ℤ‘0))
120117, 119, 30syl2anc 411 . . . . . . . . . . . . . . . . . . . . 21 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → (𝐺𝑚) ∈ ω)
121116, 120ffvelcdmd 5695 . . . . . . . . . . . . . . . . . . . 20 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → (𝑦‘(𝐺𝑚)) ∈ 2o)
12225, 121sselid 3178 . . . . . . . . . . . . . . . . . . 19 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → (𝑦‘(𝐺𝑚)) ∈ ω)
123122, 33, 34sylancl 413 . . . . . . . . . . . . . . . . . 18 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → DECID (𝑦‘(𝐺𝑚)) = ∅)
124114, 48, 115, 123infssuzledc 12090 . . . . . . . . . . . . . . . . 17 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ≤ (𝐺𝑘))
125109, 113, 124lensymd 8143 . . . . . . . . . . . . . . . 16 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → ¬ (𝐺𝑘) < inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
126125ex 115 . . . . . . . . . . . . . . 15 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} → ¬ (𝐺𝑘) < inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )))
127106, 126mt2d 626 . . . . . . . . . . . . . 14 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ¬ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅})
128 2fveq3 5560 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝐺𝑘) → (𝑦‘(𝐺𝑛)) = (𝑦‘(𝐺‘(𝐺𝑘))))
129128eqeq1d 2202 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝐺𝑘) → ((𝑦‘(𝐺𝑛)) = ∅ ↔ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
130129elrab 2917 . . . . . . . . . . . . . . . . 17 ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ ((𝐺𝑘) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
131 f1of 5501 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ω–1-1-onto→(ℤ‘0) → 𝐺:ω⟶(ℤ‘0))
13217, 131syl 14 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐺:ω⟶(ℤ‘0))
133132ffvelcdmda 5694 . . . . . . . . . . . . . . . . . 18 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ (ℤ‘0))
134133biantrurd 305 . . . . . . . . . . . . . . . . 17 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘(𝐺‘(𝐺𝑘))) = ∅ ↔ ((𝐺𝑘) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅)))
135130, 134bitr4id 199 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
136135notbid 668 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (¬ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ ¬ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
137136adantr 276 . . . . . . . . . . . . . 14 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (¬ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ ¬ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
138127, 137mpbid 147 . . . . . . . . . . . . 13 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ¬ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅)
139 f1ocnvfv1 5821 . . . . . . . . . . . . . . . . 17 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑘 ∈ ω) → (𝐺‘(𝐺𝑘)) = 𝑘)
14017, 139sylan 283 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘(𝐺𝑘)) = 𝑘)
141140fveq2d 5559 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘(𝐺‘(𝐺𝑘))) = (𝑦𝑘))
142141adantr 276 . . . . . . . . . . . . . 14 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑦‘(𝐺‘(𝐺𝑘))) = (𝑦𝑘))
143142eqeq1d 2202 . . . . . . . . . . . . 13 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝑦‘(𝐺‘(𝐺𝑘))) = ∅ ↔ (𝑦𝑘) = ∅))
144138, 143mtbid 673 . . . . . . . . . . . 12 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ¬ (𝑦𝑘) = ∅)
14539ffvelcdmda 5694 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦𝑘) ∈ 2o)
146 df2o3 6485 . . . . . . . . . . . . . . . 16 2o = {∅, 1o}
147145, 146eleqtrdi 2286 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦𝑘) ∈ {∅, 1o})
148 elpri 3642 . . . . . . . . . . . . . . 15 ((𝑦𝑘) ∈ {∅, 1o} → ((𝑦𝑘) = ∅ ∨ (𝑦𝑘) = 1o))
149147, 148syl 14 . . . . . . . . . . . . . 14 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦𝑘) = ∅ ∨ (𝑦𝑘) = 1o))
150149orcomd 730 . . . . . . . . . . . . 13 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦𝑘) = 1o ∨ (𝑦𝑘) = ∅))
151150adantr 276 . . . . . . . . . . . 12 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝑦𝑘) = 1o ∨ (𝑦𝑘) = ∅))
152144, 151ecased 1360 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑦𝑘) = 1o)
15354, 94, 1523eqtr4rd 2237 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
15451, 153sylan2br 288 . . . . . . . . 9 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
155 ssnel 4602 . . . . . . . . . . . 12 ((𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘 → ¬ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
156155adantl 277 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ¬ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
157156iffalsed 3568 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) = ∅)
15893adantr 276 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
159 simp-4r 542 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑦 ∈ ℕ)
16072ad2antrr 488 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
161 simplr 528 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑘 ∈ ω)
162 simpr 110 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)
16336, 48eleqtrrdi 2287 . . . . . . . . . . . . . 14 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅})
164 2fveq3 5560 . . . . . . . . . . . . . . . 16 (𝑛 = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) → (𝑦‘(𝐺𝑛)) = (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
165164eqeq1d 2202 . . . . . . . . . . . . . . 15 (𝑛 = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) → ((𝑦‘(𝐺𝑛)) = ∅ ↔ (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅))
166165elrab 2917 . . . . . . . . . . . . . 14 (inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ (inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅))
167163, 166sylib 122 . . . . . . . . . . . . 13 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅))
168167simprd 114 . . . . . . . . . . . 12 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅)
169168ad2antrr 488 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅)
170159, 160, 161, 162, 169nninfninc 7184 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦𝑘) = ∅)
171157, 158, 1703eqtr4rd 2237 . . . . . . . . 9 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
172 nntri3or 6548 . . . . . . . . . . . 12 ((𝑘 ∈ ω ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))
17383, 88, 172syl2anc 411 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))
174 3orass 983 . . . . . . . . . . 11 ((𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) ↔ (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)))
175173, 174sylib 122 . . . . . . . . . 10 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)))
176 eqimss2 3235 . . . . . . . . . . . . . 14 (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)
177176a1i 9 . . . . . . . . . . . . 13 (𝑘 ∈ ω → (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
178 nnon 4643 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → 𝑘 ∈ On)
179 onelss 4419 . . . . . . . . . . . . . 14 (𝑘 ∈ On → ((𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
180178, 179syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ω → ((𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
181177, 180jaod 718 . . . . . . . . . . . 12 (𝑘 ∈ ω → ((𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
182181adantl 277 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
183182orim2d 789 . . . . . . . . . 10 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)))
184175, 183mpd 13 . . . . . . . . 9 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
185154, 171, 184mpjaodan 799 . . . . . . . 8 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
18640, 45, 185eqfnfvd 5659 . . . . . . 7 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
187 fveq2 5555 . . . . . . . 8 (𝑧 = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) → (𝐼𝑧) = (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
188187rspceeqv 2883 . . . . . . 7 ((inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0*𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
18937, 186, 188syl2anc 411 . . . . . 6 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
190189rexlimdvaa 2612 . . . . 5 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧)))
191190imp 124 . . . 4 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∃𝑗 ∈ ω (𝑦𝑗) = ∅) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
192 pnf0xnn0 9313 . . . . 5 +∞ ∈ ℕ0*
19324ffnd 5405 . . . . . . 7 (𝑦 ∈ ℕ𝑦 Fn ω)
194193ad2antlr 489 . . . . . 6 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → 𝑦 Fn ω)
195 1oex 6479 . . . . . . . 8 1o ∈ V
1961, 2, 3inftonninf 10516 . . . . . . . 8 (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
197195, 196fnmpti 5383 . . . . . . 7 (𝐼‘+∞) Fn ω
198197a1i 9 . . . . . 6 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → (𝐼‘+∞) Fn ω)
199 fveqeq2 5564 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑦𝑗) = 1o ↔ (𝑦𝑘) = 1o))
200 simplr 528 . . . . . . . 8 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → ∀𝑗 ∈ ω (𝑦𝑗) = 1o)
201 simpr 110 . . . . . . . 8 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω)
202199, 200, 201rspcdva 2870 . . . . . . 7 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦𝑘) = 1o)
203 eqidd 2194 . . . . . . . . 9 (𝑥 = 𝑘 → 1o = 1o)
204203, 196, 195fvmpt 5635 . . . . . . . 8 (𝑘 ∈ ω → ((𝐼‘+∞)‘𝑘) = 1o)
205204adantl 277 . . . . . . 7 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → ((𝐼‘+∞)‘𝑘) = 1o)
206202, 205eqtr4d 2229 . . . . . 6 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦𝑘) = ((𝐼‘+∞)‘𝑘))
207194, 198, 206eqfnfvd 5659 . . . . 5 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → 𝑦 = (𝐼‘+∞))
208 fveq2 5555 . . . . . 6 (𝑧 = +∞ → (𝐼𝑧) = (𝐼‘+∞))
209208rspceeqv 2883 . . . . 5 ((+∞ ∈ ℕ0*𝑦 = (𝐼‘+∞)) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
210192, 207, 209sylancr 414 . . . 4 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
211 isomni 7197 . . . . . . . 8 (ω ∈ V → (ω ∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o))))
21273, 211ax-mp 5 . . . . . . 7 (ω ∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o)))
213212biimpi 120 . . . . . 6 (ω ∈ Omni → ∀𝑦(𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o)))
21421319.21bi 1569 . . . . 5 (ω ∈ Omni → (𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o)))
215214, 24impel 280 . . . 4 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o))
216191, 210, 215mpjaodan 799 . . 3 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
217216ralrimiva 2567 . 2 (ω ∈ Omni → ∀𝑦 ∈ ℕ𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
218 dffo3 5706 . 2 (𝐼:ℕ0*onto→ℕ ↔ (𝐼:ℕ0*⟶ℕ ∧ ∀𝑦 ∈ ℕ𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧)))
2195, 217, 218sylanbrc 417 1 (ω ∈ Omni → 𝐼:ℕ0*onto→ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  wal 1362   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  cun 3152  wss 3154  c0 3447  ifcif 3558  {csn 3619  {cpr 3620  cop 3622   class class class wbr 4030  cmpt 4091  Oncon0 4395  ωcom 4623   × cxp 4658  ccnv 4659  ccom 4664   Fn wfn 5250  wf 5251  ontowfo 5253  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  freccfrec 6445  1oc1o 6464  2oc2o 6465  infcinf 7044  xnninf 7180  Omnicomni 7195  cr 7873  0cc0 7874  1c1 7875   + caddc 7877  +∞cpnf 8053   < clt 8056  0cn0 9243  0*cxnn0 9306  cz 9320  cuz 9595  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-map 6706  df-sup 7045  df-inf 7046  df-nninf 7181  df-omni 7196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-xnn0 9307  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  nninfct  12181
  Copyright terms: Public domain W3C validator