Step | Hyp | Ref
| Expression |
1 | | nninfct.g |
. . . 4
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
2 | | nninfct.f |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
3 | | nninfct.i |
. . . 4
⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉}) |
4 | 1, 2, 3 | fxnn0nninf 10510 |
. . 3
⊢ 𝐼:ℕ0*⟶ℕ∞ |
5 | 4 | a1i 9 |
. 2
⊢ (ω
∈ Omni → 𝐼:ℕ0*⟶ℕ∞) |
6 | | ssrab2 3264 |
. . . . . . . . 9
⊢ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} ⊆
(ℤ≥‘0) |
7 | | nn0uz 9627 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
8 | | nn0ssxnn0 9306 |
. . . . . . . . . 10
⊢
ℕ0 ⊆
ℕ0* |
9 | 7, 8 | eqsstrri 3212 |
. . . . . . . . 9
⊢
(ℤ≥‘0) ⊆
ℕ0* |
10 | 6, 9 | sstri 3188 |
. . . . . . . 8
⊢ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} ⊆
ℕ0* |
11 | | 0zd 9329 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 0 ∈
ℤ) |
12 | | eqid 2193 |
. . . . . . . . 9
⊢ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} = {𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} |
13 | | fveq2 5554 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝐺‘𝑗) → (◡𝐺‘𝑚) = (◡𝐺‘(𝐺‘𝑗))) |
14 | 13 | fveqeq2d 5562 |
. . . . . . . . . 10
⊢ (𝑚 = (𝐺‘𝑗) → ((𝑦‘(◡𝐺‘𝑚)) = ∅ ↔ (𝑦‘(◡𝐺‘(𝐺‘𝑗))) = ∅)) |
15 | | simprl 529 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑗 ∈ ω) |
16 | 11, 1, 15 | frec2uzuzd 10473 |
. . . . . . . . . 10
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐺‘𝑗) ∈
(ℤ≥‘0)) |
17 | 11, 1 | frec2uzf1od 10477 |
. . . . . . . . . . . . 13
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
18 | | f1ocnvfv1 5820 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑗 ∈ ω) → (◡𝐺‘(𝐺‘𝑗)) = 𝑗) |
19 | 17, 15, 18 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (◡𝐺‘(𝐺‘𝑗)) = 𝑗) |
20 | 19 | fveq2d 5558 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘(◡𝐺‘(𝐺‘𝑗))) = (𝑦‘𝑗)) |
21 | | simprr 531 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘𝑗) = ∅) |
22 | 20, 21 | eqtrd 2226 |
. . . . . . . . . 10
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘(◡𝐺‘(𝐺‘𝑗))) = ∅) |
23 | 14, 16, 22 | elrabd 2918 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐺‘𝑗) ∈ {𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}) |
24 | | nninff 7181 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
ℕ∞ → 𝑦:ω⟶2o) |
25 | | 2ssom 6577 |
. . . . . . . . . . . . . 14
⊢
2o ⊆ ω |
26 | 25 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
ℕ∞ → 2o ⊆
ω) |
27 | 24, 26 | fssd 5416 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
ℕ∞ → 𝑦:ω⟶ω) |
28 | 27 | ad3antlr 493 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → 𝑦:ω⟶ω) |
29 | | elfzuz 10087 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...(𝐺‘𝑗)) → 𝑚 ∈
(ℤ≥‘0)) |
30 | | f1ocnvdm 5824 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑚 ∈
(ℤ≥‘0)) → (◡𝐺‘𝑚) ∈ ω) |
31 | 17, 29, 30 | syl2an 289 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → (◡𝐺‘𝑚) ∈ ω) |
32 | 28, 31 | ffvelcdmd 5694 |
. . . . . . . . . 10
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → (𝑦‘(◡𝐺‘𝑚)) ∈ ω) |
33 | | peano1 4626 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
34 | | nndceq 6552 |
. . . . . . . . . 10
⊢ (((𝑦‘(◡𝐺‘𝑚)) ∈ ω ∧ ∅ ∈
ω) → DECID (𝑦‘(◡𝐺‘𝑚)) = ∅) |
35 | 32, 33, 34 | sylancl 413 |
. . . . . . . . 9
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → DECID (𝑦‘(◡𝐺‘𝑚)) = ∅) |
36 | 11, 12, 23, 35 | infssuzcldc 12088 |
. . . . . . . 8
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}) |
37 | 10, 36 | sselid 3177 |
. . . . . . 7
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0*) |
38 | 24 | adantl 277 |
. . . . . . . . . 10
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → 𝑦:ω⟶2o) |
39 | 38 | adantr 276 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑦:ω⟶2o) |
40 | 39 | ffnd 5404 |
. . . . . . . 8
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑦 Fn ω) |
41 | 4 | a1i 9 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝐼:ℕ0*⟶ℕ∞) |
42 | 41, 37 | ffvelcdmd 5694 |
. . . . . . . . . 10
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ℕ∞) |
43 | | nninff 7181 |
. . . . . . . . . 10
⊢ ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ℕ∞ → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)):ω⟶2o) |
44 | 42, 43 | syl 14 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)):ω⟶2o) |
45 | 44 | ffnd 5404 |
. . . . . . . 8
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) Fn
ω) |
46 | | 2fveq3 5559 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝑦‘(◡𝐺‘𝑛)) = (𝑦‘(◡𝐺‘𝑚))) |
47 | 46 | eqeq1d 2202 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((𝑦‘(◡𝐺‘𝑛)) = ∅ ↔ (𝑦‘(◡𝐺‘𝑚)) = ∅)) |
48 | 47 | cbvrabv 2759 |
. . . . . . . . . . . . 13
⊢ {𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} = {𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} |
49 | 48 | infeq1i 7072 |
. . . . . . . . . . . 12
⊢
inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) = inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
) |
50 | 49 | fveq2i 5557 |
. . . . . . . . . . 11
⊢ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)) |
51 | 50 | eleq2i 2260 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
52 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
))) |
53 | 52, 51 | sylib 122 |
. . . . . . . . . . . 12
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
54 | 53 | iftrued 3564 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) = 1o) |
55 | 3 | fveq1i 5555 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)) |
56 | 6, 36 | sselid 3177 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) |
57 | 56, 7 | eleqtrrdi 2287 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0) |
58 | 57 | nn0nepnfd 9313 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ≠
+∞) |
59 | 58 | necomd 2450 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → +∞ ≠ inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)) |
60 | | fvunsng 5752 |
. . . . . . . . . . . . . . . . . 18
⊢
((inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0 ∧ +∞ ≠ inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) →
(((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
61 | 57, 59, 60 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
62 | 55, 61 | eqtrid 2238 |
. . . . . . . . . . . . . . . 16
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
63 | | dff1o4 5508 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘0) ↔ (𝐺 Fn ω ∧ ◡𝐺 Fn
(ℤ≥‘0))) |
64 | 17, 63 | sylib 122 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐺 Fn ω ∧ ◡𝐺 Fn
(ℤ≥‘0))) |
65 | 64 | simprd 114 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ◡𝐺 Fn
(ℤ≥‘0)) |
66 | | fvco2 5626 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐺 Fn (ℤ≥‘0) ∧
inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) → ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (𝐹‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
67 | 65, 56, 66 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (𝐹‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
68 | | eleq2 2257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
69 | 68 | ifbid 3578 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) →
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
70 | 69 | mpteq2dv 4120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))) |
71 | | f1ocnvdm 5824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧
inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
72 | 17, 56, 71 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
73 | | omex 4625 |
. . . . . . . . . . . . . . . . . . 19
⊢ ω
∈ V |
74 | 73 | mptex 5784 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) ∈ V |
75 | 74 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) ∈ V) |
76 | 2, 70, 72, 75 | fvmptd3 5651 |
. . . . . . . . . . . . . . . 16
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐹‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))) |
77 | 62, 67, 76 | 3eqtrd 2230 |
. . . . . . . . . . . . . . 15
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))) |
78 | 77 | fveq1d 5556 |
. . . . . . . . . . . . . 14
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))‘𝑘)) |
79 | 78 | adantr 276 |
. . . . . . . . . . . . 13
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))‘𝑘)) |
80 | | eqid 2193 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
81 | | eleq1w 2254 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑘 → (𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
82 | 81 | ifbid 3578 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
83 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω) |
84 | | 1lt2o 6495 |
. . . . . . . . . . . . . . . 16
⊢
1o ∈ 2o |
85 | 84 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 1o ∈
2o) |
86 | | 0lt2o 6494 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ 2o |
87 | 86 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ∅ ∈
2o) |
88 | 72 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
89 | | nndcel 6553 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ω ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) → DECID 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
90 | 83, 88, 89 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → DECID
𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
91 | 85, 87, 90 | ifcldcd 3593 |
. . . . . . . . . . . . . 14
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) ∈ 2o) |
92 | 80, 82, 83, 91 | fvmptd3 5651 |
. . . . . . . . . . . . 13
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
93 | 79, 92 | eqtrd 2226 |
. . . . . . . . . . . 12
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
94 | 93 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝐼‘inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
95 | | 0zd 9329 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 0
∈ ℤ) |
96 | | simplr 528 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈
ω) |
97 | 50, 88 | eqeltrid 2280 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ∈
ω) |
98 | 97 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ∈
ω) |
99 | 95, 1, 96, 98 | frec2uzlt2d 10475 |
. . . . . . . . . . . . . . . . 17
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ↔ (𝐺‘𝑘) < (𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
))))) |
100 | 52, 99 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝐺‘𝑘) < (𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)))) |
101 | 17 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
102 | 49, 56 | eqeltrid 2280 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) |
103 | 102 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) |
104 | | f1ocnvfv2 5821 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧
inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) → (𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
105 | 101, 103,
104 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
106 | 100, 105 | breqtrd 4055 |
. . . . . . . . . . . . . . 15
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝐺‘𝑘) < inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
107 | 49, 57 | eqeltrid 2280 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
ℕ0) |
108 | 107 | ad3antrrr 492 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
ℕ0) |
109 | 108 | nn0red 9294 |
. . . . . . . . . . . . . . . . 17
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
ℝ) |
110 | | elrabi 2913 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} → (𝐺‘𝑘) ∈
(ℤ≥‘0)) |
111 | 110, 7 | eleqtrrdi 2287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} → (𝐺‘𝑘) ∈
ℕ0) |
112 | 111 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → (𝐺‘𝑘) ∈
ℕ0) |
113 | 112 | nn0red 9294 |
. . . . . . . . . . . . . . . . 17
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → (𝐺‘𝑘) ∈ ℝ) |
114 | | 0zd 9329 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → 0 ∈
ℤ) |
115 | | simpr 110 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) |
116 | 39 | ad4antr 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → 𝑦:ω⟶2o) |
117 | 17 | ad4antr 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
118 | | elfzuz 10087 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ (0...(𝐺‘𝑘)) → 𝑚 ∈
(ℤ≥‘0)) |
119 | 118 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → 𝑚 ∈
(ℤ≥‘0)) |
120 | 117, 119,
30 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → (◡𝐺‘𝑚) ∈ ω) |
121 | 116, 120 | ffvelcdmd 5694 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → (𝑦‘(◡𝐺‘𝑚)) ∈ 2o) |
122 | 25, 121 | sselid 3177 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → (𝑦‘(◡𝐺‘𝑚)) ∈ ω) |
123 | 122, 33, 34 | sylancl 413 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → DECID (𝑦‘(◡𝐺‘𝑚)) = ∅) |
124 | 114, 48, 115, 123 | infssuzledc 12087 |
. . . . . . . . . . . . . . . . 17
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ≤ (𝐺‘𝑘)) |
125 | 109, 113,
124 | lensymd 8141 |
. . . . . . . . . . . . . . . 16
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → ¬ (𝐺‘𝑘) < inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
126 | 125 | ex 115 |
. . . . . . . . . . . . . . 15
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} → ¬ (𝐺‘𝑘) < inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
))) |
127 | 106, 126 | mt2d 626 |
. . . . . . . . . . . . . 14
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → ¬
(𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) |
128 | | 2fveq3 5559 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝐺‘𝑘) → (𝑦‘(◡𝐺‘𝑛)) = (𝑦‘(◡𝐺‘(𝐺‘𝑘)))) |
129 | 128 | eqeq1d 2202 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝐺‘𝑘) → ((𝑦‘(◡𝐺‘𝑛)) = ∅ ↔ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
130 | 129 | elrab 2916 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ ((𝐺‘𝑘) ∈ (ℤ≥‘0)
∧ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
131 | | f1of 5500 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘0) → 𝐺:ω⟶(ℤ≥‘0)) |
132 | 17, 131 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝐺:ω⟶(ℤ≥‘0)) |
133 | 132 | ffvelcdmda 5693 |
. . . . . . . . . . . . . . . . . 18
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘𝑘) ∈
(ℤ≥‘0)) |
134 | 133 | biantrurd 305 |
. . . . . . . . . . . . . . . . 17
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅ ↔ ((𝐺‘𝑘) ∈ (ℤ≥‘0)
∧ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅))) |
135 | 130, 134 | bitr4id 199 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
136 | 135 | notbid 668 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (¬ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ ¬ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
137 | 136 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(¬ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ ¬ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
138 | 127, 137 | mpbid 147 |
. . . . . . . . . . . . 13
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → ¬
(𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅) |
139 | | f1ocnvfv1 5820 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑘 ∈ ω) → (◡𝐺‘(𝐺‘𝑘)) = 𝑘) |
140 | 17, 139 | sylan 283 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (◡𝐺‘(𝐺‘𝑘)) = 𝑘) |
141 | 140 | fveq2d 5558 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = (𝑦‘𝑘)) |
142 | 141 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑦‘(◡𝐺‘(𝐺‘𝑘))) = (𝑦‘𝑘)) |
143 | 142 | eqeq1d 2202 |
. . . . . . . . . . . . 13
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅ ↔ (𝑦‘𝑘) = ∅)) |
144 | 138, 143 | mtbid 673 |
. . . . . . . . . . . 12
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → ¬
(𝑦‘𝑘) = ∅) |
145 | 39 | ffvelcdmda 5693 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) ∈ 2o) |
146 | | df2o3 6483 |
. . . . . . . . . . . . . . . 16
⊢
2o = {∅, 1o} |
147 | 145, 146 | eleqtrdi 2286 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) ∈ {∅,
1o}) |
148 | | elpri 3641 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦‘𝑘) ∈ {∅, 1o} →
((𝑦‘𝑘) = ∅ ∨ (𝑦‘𝑘) = 1o)) |
149 | 147, 148 | syl 14 |
. . . . . . . . . . . . . 14
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘𝑘) = ∅ ∨ (𝑦‘𝑘) = 1o)) |
150 | 149 | orcomd 730 |
. . . . . . . . . . . . 13
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘𝑘) = 1o ∨ (𝑦‘𝑘) = ∅)) |
151 | 150 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝑦‘𝑘) = 1o ∨ (𝑦‘𝑘) = ∅)) |
152 | 144, 151 | ecased 1360 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑦‘𝑘) = 1o) |
153 | 54, 94, 152 | 3eqtr4rd 2237 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
154 | 51, 153 | sylan2br 288 |
. . . . . . . . 9
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) →
(𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
155 | | ssnel 4601 |
. . . . . . . . . . . 12
⊢ ((◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘 → ¬ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
156 | 155 | adantl 277 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ¬ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
157 | 156 | iffalsed 3567 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) = ∅) |
158 | 93 | adantr 276 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
159 | | simp-4r 542 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑦 ∈
ℕ∞) |
160 | 72 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
161 | | simplr 528 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑘 ∈ ω) |
162 | | simpr 110 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) |
163 | 36, 48 | eleqtrrdi 2287 |
. . . . . . . . . . . . . 14
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) |
164 | | 2fveq3 5559 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) → (𝑦‘(◡𝐺‘𝑛)) = (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
165 | 164 | eqeq1d 2202 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) → ((𝑦‘(◡𝐺‘𝑛)) = ∅ ↔ (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅)) |
166 | 165 | elrab 2916 |
. . . . . . . . . . . . . 14
⊢
(inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ (inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0) ∧ (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅)) |
167 | 163, 166 | sylib 122 |
. . . . . . . . . . . . 13
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0) ∧ (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅)) |
168 | 167 | simprd 114 |
. . . . . . . . . . . 12
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅) |
169 | 168 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅) |
170 | 159, 160,
161, 162, 169 | nninfninc 7182 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘𝑘) = ∅) |
171 | 157, 158,
170 | 3eqtr4rd 2237 |
. . . . . . . . 9
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
172 | | nntri3or 6546 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ω ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) → (𝑘 ∈
(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) |
173 | 83, 88, 172 | syl2anc 411 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) |
174 | | 3orass 983 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) ↔ (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))) |
175 | 173, 174 | sylib 122 |
. . . . . . . . . 10
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))) |
176 | | eqimss2 3234 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) |
177 | 176 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ω → (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
178 | | nnon 4642 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ω → 𝑘 ∈ On) |
179 | | onelss 4418 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ On → ((◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
180 | 178, 179 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ω → ((◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
181 | 177, 180 | jaod 718 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ω → ((𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
182 | 181 | adantl 277 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
183 | 182 | orim2d 789 |
. . . . . . . . . 10
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))) |
184 | 175, 183 | mpd 13 |
. . . . . . . . 9
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
185 | 154, 171,
184 | mpjaodan 799 |
. . . . . . . 8
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
186 | 40, 45, 185 | eqfnfvd 5658 |
. . . . . . 7
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
187 | | fveq2 5554 |
. . . . . . . 8
⊢ (𝑧 = inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) → (𝐼‘𝑧) = (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
188 | 187 | rspceeqv 2882 |
. . . . . . 7
⊢
((inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0* ∧ 𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) →
∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
189 | 37, 186, 188 | syl2anc 411 |
. . . . . 6
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
190 | 189 | rexlimdvaa 2612 |
. . . . 5
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → (∃𝑗 ∈ ω (𝑦‘𝑗) = ∅ → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼‘𝑧))) |
191 | 190 | imp 124 |
. . . 4
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼‘𝑧)) |
192 | | pnf0xnn0 9310 |
. . . . 5
⊢ +∞
∈ ℕ0* |
193 | 24 | ffnd 5404 |
. . . . . . 7
⊢ (𝑦 ∈
ℕ∞ → 𝑦 Fn ω) |
194 | 193 | ad2antlr 489 |
. . . . . 6
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → 𝑦 Fn ω) |
195 | | 1oex 6477 |
. . . . . . . 8
⊢
1o ∈ V |
196 | 1, 2, 3 | inftonninf 10513 |
. . . . . . . 8
⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦
1o) |
197 | 195, 196 | fnmpti 5382 |
. . . . . . 7
⊢ (𝐼‘+∞) Fn
ω |
198 | 197 | a1i 9 |
. . . . . 6
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → (𝐼‘+∞) Fn
ω) |
199 | | fveqeq2 5563 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝑦‘𝑗) = 1o ↔ (𝑦‘𝑘) = 1o)) |
200 | | simplr 528 |
. . . . . . . 8
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o) |
201 | | simpr 110 |
. . . . . . . 8
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω) |
202 | 199, 200,
201 | rspcdva 2869 |
. . . . . . 7
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) = 1o) |
203 | | eqidd 2194 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → 1o =
1o) |
204 | 203, 196,
195 | fvmpt 5634 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → ((𝐼‘+∞)‘𝑘) =
1o) |
205 | 204 | adantl 277 |
. . . . . . 7
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → ((𝐼‘+∞)‘𝑘) = 1o) |
206 | 202, 205 | eqtr4d 2229 |
. . . . . 6
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) = ((𝐼‘+∞)‘𝑘)) |
207 | 194, 198,
206 | eqfnfvd 5658 |
. . . . 5
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → 𝑦 = (𝐼‘+∞)) |
208 | | fveq2 5554 |
. . . . . 6
⊢ (𝑧 = +∞ → (𝐼‘𝑧) = (𝐼‘+∞)) |
209 | 208 | rspceeqv 2882 |
. . . . 5
⊢
((+∞ ∈ ℕ0* ∧ 𝑦 = (𝐼‘+∞)) → ∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
210 | 192, 207,
209 | sylancr 414 |
. . . 4
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → ∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
211 | | isomni 7195 |
. . . . . . . 8
⊢ (ω
∈ V → (ω ∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o)))) |
212 | 73, 211 | ax-mp 5 |
. . . . . . 7
⊢ (ω
∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o))) |
213 | 212 | biimpi 120 |
. . . . . 6
⊢ (ω
∈ Omni → ∀𝑦(𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o))) |
214 | 213 | 19.21bi 1569 |
. . . . 5
⊢ (ω
∈ Omni → (𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o))) |
215 | 214, 24 | impel 280 |
. . . 4
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → (∃𝑗 ∈ ω (𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o)) |
216 | 191, 210,
215 | mpjaodan 799 |
. . 3
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼‘𝑧)) |
217 | 216 | ralrimiva 2567 |
. 2
⊢ (ω
∈ Omni → ∀𝑦 ∈ ℕ∞
∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
218 | | dffo3 5705 |
. 2
⊢ (𝐼:ℕ0*–onto→ℕ∞ ↔
(𝐼:ℕ0*⟶ℕ∞
∧ ∀𝑦 ∈ ℕ∞
∃𝑧 ∈ ℕ0*
𝑦 = (𝐼‘𝑧))) |
219 | 5, 217, 218 | sylanbrc 417 |
1
⊢ (ω
∈ Omni → 𝐼:ℕ0*–onto→ℕ∞) |