ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfctlemfo GIF version

Theorem nninfctlemfo 12232
Description: Lemma for nninfct 12233. (Contributed by Jim Kingdon, 10-Jul-2025.)
Hypotheses
Ref Expression
nninfct.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
nninfct.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
nninfct.i 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
Assertion
Ref Expression
nninfctlemfo (ω ∈ Omni → 𝐼:ℕ0*onto→ℕ)
Distinct variable group:   𝑖,𝐺,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑖,𝑛)

Proof of Theorem nninfctlemfo
Dummy variables 𝑘 𝑚 𝑧 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfct.g . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2 nninfct.f . . . 4 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
3 nninfct.i . . . 4 𝐼 = ((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})
41, 2, 3fxnn0nninf 10548 . . 3 𝐼:ℕ0*⟶ℕ
54a1i 9 . 2 (ω ∈ Omni → 𝐼:ℕ0*⟶ℕ)
6 ssrab2 3269 . . . . . . . . 9 {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅} ⊆ (ℤ‘0)
7 nn0uz 9653 . . . . . . . . . 10 0 = (ℤ‘0)
8 nn0ssxnn0 9332 . . . . . . . . . 10 0 ⊆ ℕ0*
97, 8eqsstrri 3217 . . . . . . . . 9 (ℤ‘0) ⊆ ℕ0*
106, 9sstri 3193 . . . . . . . 8 {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅} ⊆ ℕ0*
11 0zd 9355 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 0 ∈ ℤ)
12 eqid 2196 . . . . . . . . 9 {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅} = {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}
13 fveq2 5561 . . . . . . . . . . 11 (𝑚 = (𝐺𝑗) → (𝐺𝑚) = (𝐺‘(𝐺𝑗)))
1413fveqeq2d 5569 . . . . . . . . . 10 (𝑚 = (𝐺𝑗) → ((𝑦‘(𝐺𝑚)) = ∅ ↔ (𝑦‘(𝐺‘(𝐺𝑗))) = ∅))
15 simprl 529 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑗 ∈ ω)
1611, 1, 15frec2uzuzd 10511 . . . . . . . . . 10 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺𝑗) ∈ (ℤ‘0))
1711, 1frec2uzf1od 10515 . . . . . . . . . . . . 13 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐺:ω–1-1-onto→(ℤ‘0))
18 f1ocnvfv1 5827 . . . . . . . . . . . . 13 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑗 ∈ ω) → (𝐺‘(𝐺𝑗)) = 𝑗)
1917, 15, 18syl2anc 411 . . . . . . . . . . . 12 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺‘(𝐺𝑗)) = 𝑗)
2019fveq2d 5565 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦‘(𝐺‘(𝐺𝑗))) = (𝑦𝑗))
21 simprr 531 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦𝑗) = ∅)
2220, 21eqtrd 2229 . . . . . . . . . 10 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦‘(𝐺‘(𝐺𝑗))) = ∅)
2314, 16, 22elrabd 2922 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺𝑗) ∈ {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅})
24 nninff 7197 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ𝑦:ω⟶2o)
25 2ssom 6591 . . . . . . . . . . . . . 14 2o ⊆ ω
2625a1i 9 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 2o ⊆ ω)
2724, 26fssd 5423 . . . . . . . . . . . 12 (𝑦 ∈ ℕ𝑦:ω⟶ω)
2827ad3antlr 493 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → 𝑦:ω⟶ω)
29 elfzuz 10113 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝐺𝑗)) → 𝑚 ∈ (ℤ‘0))
30 f1ocnvdm 5831 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
3117, 29, 30syl2an 289 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → (𝐺𝑚) ∈ ω)
3228, 31ffvelcdmd 5701 . . . . . . . . . 10 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → (𝑦‘(𝐺𝑚)) ∈ ω)
33 peano1 4631 . . . . . . . . . 10 ∅ ∈ ω
34 nndceq 6566 . . . . . . . . . 10 (((𝑦‘(𝐺𝑚)) ∈ ω ∧ ∅ ∈ ω) → DECID (𝑦‘(𝐺𝑚)) = ∅)
3532, 33, 34sylancl 413 . . . . . . . . 9 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺𝑗))) → DECID (𝑦‘(𝐺𝑚)) = ∅)
3611, 12, 23, 35infssuzcldc 10342 . . . . . . . 8 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅})
3710, 36sselid 3182 . . . . . . 7 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0*)
3824adantl 277 . . . . . . . . . 10 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → 𝑦:ω⟶2o)
3938adantr 276 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑦:ω⟶2o)
4039ffnd 5411 . . . . . . . 8 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑦 Fn ω)
414a1i 9 . . . . . . . . . . 11 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐼:ℕ0*⟶ℕ)
4241, 37ffvelcdmd 5701 . . . . . . . . . 10 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ℕ)
43 nninff 7197 . . . . . . . . . 10 ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ℕ → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )):ω⟶2o)
4442, 43syl 14 . . . . . . . . 9 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )):ω⟶2o)
4544ffnd 5411 . . . . . . . 8 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) Fn ω)
46 2fveq3 5566 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑦‘(𝐺𝑛)) = (𝑦‘(𝐺𝑚)))
4746eqeq1d 2205 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑦‘(𝐺𝑛)) = ∅ ↔ (𝑦‘(𝐺𝑚)) = ∅))
4847cbvrabv 2762 . . . . . . . . . . . . 13 {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} = {𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}
4948infeq1i 7088 . . . . . . . . . . . 12 inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )
5049fveq2i 5564 . . . . . . . . . . 11 (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))
5150eleq2i 2263 . . . . . . . . . 10 (𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
52 simpr 110 . . . . . . . . . . . . 13 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )))
5352, 51sylib 122 . . . . . . . . . . . 12 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
5453iftrued 3569 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) = 1o)
553fveq1i 5562 . . . . . . . . . . . . . . . . 17 (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))
566, 36sselid 3182 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0))
5756, 7eleqtrrdi 2290 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0)
5857nn0nepnfd 9339 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ≠ +∞)
5958necomd 2453 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → +∞ ≠ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))
60 fvunsng 5759 . . . . . . . . . . . . . . . . . 18 ((inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0 ∧ +∞ ≠ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
6157, 59, 60syl2anc 411 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (((𝐹𝐺) ∪ {⟨+∞, (ω × {1o})⟩})‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
6255, 61eqtrid 2241 . . . . . . . . . . . . . . . 16 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
63 dff1o4 5515 . . . . . . . . . . . . . . . . . . 19 (𝐺:ω–1-1-onto→(ℤ‘0) ↔ (𝐺 Fn ω ∧ 𝐺 Fn (ℤ‘0)))
6417, 63sylib 122 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺 Fn ω ∧ 𝐺 Fn (ℤ‘0)))
6564simprd 114 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐺 Fn (ℤ‘0))
66 fvco2 5633 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn (ℤ‘0) ∧ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0)) → ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (𝐹‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
6765, 56, 66syl2anc 411 . . . . . . . . . . . . . . . 16 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → ((𝐹𝐺)‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (𝐹‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
68 eleq2 2260 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝑖𝑛𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
6968ifbid 3583 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
7069mpteq2dv 4125 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)))
71 f1ocnvdm 5831 . . . . . . . . . . . . . . . . . 18 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0)) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
7217, 56, 71syl2anc 411 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
73 omex 4630 . . . . . . . . . . . . . . . . . . 19 ω ∈ V
7473mptex 5791 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)) ∈ V
7574a1i 9 . . . . . . . . . . . . . . . . 17 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)) ∈ V)
762, 70, 72, 75fvmptd3 5658 . . . . . . . . . . . . . . . 16 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐹‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)))
7762, 67, 763eqtrd 2233 . . . . . . . . . . . . . . 15 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)))
7877fveq1d 5563 . . . . . . . . . . . . . 14 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))‘𝑘))
7978adantr 276 . . . . . . . . . . . . 13 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))‘𝑘))
80 eqid 2196 . . . . . . . . . . . . . 14 (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
81 eleq1w 2257 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
8281ifbid 3583 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
83 simpr 110 . . . . . . . . . . . . . 14 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω)
84 1lt2o 6509 . . . . . . . . . . . . . . . 16 1o ∈ 2o
8584a1i 9 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 1o ∈ 2o)
86 0lt2o 6508 . . . . . . . . . . . . . . . 16 ∅ ∈ 2o
8786a1i 9 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ∅ ∈ 2o)
8872adantr 276 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
89 nndcel 6567 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω) → DECID 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
9083, 88, 89syl2anc 411 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → DECID 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
9185, 87, 90ifcldcd 3598 . . . . . . . . . . . . . 14 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) ∈ 2o)
9280, 82, 83, 91fvmptd3 5658 . . . . . . . . . . . . 13 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
9379, 92eqtrd 2229 . . . . . . . . . . . 12 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
9493adantr 276 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
95 0zd 9355 . . . . . . . . . . . . . . . . . 18 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 0 ∈ ℤ)
96 simplr 528 . . . . . . . . . . . . . . . . . 18 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ ω)
9750, 88eqeltrid 2283 . . . . . . . . . . . . . . . . . . 19 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ∈ ω)
9897adantr 276 . . . . . . . . . . . . . . . . . 18 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ∈ ω)
9995, 1, 96, 98frec2uzlt2d 10513 . . . . . . . . . . . . . . . . 17 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )) ↔ (𝐺𝑘) < (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )))))
10052, 99mpbid 147 . . . . . . . . . . . . . . . 16 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺𝑘) < (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))))
10117ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → 𝐺:ω–1-1-onto→(ℤ‘0))
10249, 56eqeltrid 2283 . . . . . . . . . . . . . . . . . 18 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ (ℤ‘0))
103102ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ (ℤ‘0))
104 f1ocnvfv2 5828 . . . . . . . . . . . . . . . . 17 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ (ℤ‘0)) → (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
105101, 103, 104syl2anc 411 . . . . . . . . . . . . . . . 16 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺‘(𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
106100, 105breqtrd 4060 . . . . . . . . . . . . . . 15 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝐺𝑘) < inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
10749, 57eqeltrid 2283 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ ℕ0)
108107ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ ℕ0)
109108nn0red 9320 . . . . . . . . . . . . . . . . 17 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ∈ ℝ)
110 elrabi 2917 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} → (𝐺𝑘) ∈ (ℤ‘0))
111110, 7eleqtrrdi 2290 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} → (𝐺𝑘) ∈ ℕ0)
112111adantl 277 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → (𝐺𝑘) ∈ ℕ0)
113112nn0red 9320 . . . . . . . . . . . . . . . . 17 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → (𝐺𝑘) ∈ ℝ)
114 0zd 9355 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → 0 ∈ ℤ)
115 simpr 110 . . . . . . . . . . . . . . . . . 18 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅})
11639ad4antr 494 . . . . . . . . . . . . . . . . . . . . 21 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → 𝑦:ω⟶2o)
11717ad4antr 494 . . . . . . . . . . . . . . . . . . . . . 22 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → 𝐺:ω–1-1-onto→(ℤ‘0))
118 elfzuz 10113 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐺𝑘)) → 𝑚 ∈ (ℤ‘0))
119118adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → 𝑚 ∈ (ℤ‘0))
120117, 119, 30syl2anc 411 . . . . . . . . . . . . . . . . . . . . 21 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → (𝐺𝑚) ∈ ω)
121116, 120ffvelcdmd 5701 . . . . . . . . . . . . . . . . . . . 20 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → (𝑦‘(𝐺𝑚)) ∈ 2o)
12225, 121sselid 3182 . . . . . . . . . . . . . . . . . . 19 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → (𝑦‘(𝐺𝑚)) ∈ ω)
123122, 33, 34sylancl 413 . . . . . . . . . . . . . . . . . 18 (((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺𝑘))) → DECID (𝑦‘(𝐺𝑚)) = ∅)
124114, 48, 115, 123infssuzledc 10341 . . . . . . . . . . . . . . . . 17 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ) ≤ (𝐺𝑘))
125109, 113, 124lensymd 8165 . . . . . . . . . . . . . . . 16 ((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}) → ¬ (𝐺𝑘) < inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))
126125ex 115 . . . . . . . . . . . . . . 15 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} → ¬ (𝐺𝑘) < inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < )))
127106, 126mt2d 626 . . . . . . . . . . . . . 14 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ¬ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅})
128 2fveq3 5566 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝐺𝑘) → (𝑦‘(𝐺𝑛)) = (𝑦‘(𝐺‘(𝐺𝑘))))
129128eqeq1d 2205 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝐺𝑘) → ((𝑦‘(𝐺𝑛)) = ∅ ↔ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
130129elrab 2920 . . . . . . . . . . . . . . . . 17 ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ ((𝐺𝑘) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
131 f1of 5507 . . . . . . . . . . . . . . . . . . . 20 (𝐺:ω–1-1-onto→(ℤ‘0) → 𝐺:ω⟶(ℤ‘0))
13217, 131syl 14 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝐺:ω⟶(ℤ‘0))
133132ffvelcdmda 5700 . . . . . . . . . . . . . . . . . 18 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ (ℤ‘0))
134133biantrurd 305 . . . . . . . . . . . . . . . . 17 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘(𝐺‘(𝐺𝑘))) = ∅ ↔ ((𝐺𝑘) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅)))
135130, 134bitr4id 199 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
136135notbid 668 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (¬ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ ¬ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
137136adantr 276 . . . . . . . . . . . . . 14 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (¬ (𝐺𝑘) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ ¬ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅))
138127, 137mpbid 147 . . . . . . . . . . . . 13 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ¬ (𝑦‘(𝐺‘(𝐺𝑘))) = ∅)
139 f1ocnvfv1 5827 . . . . . . . . . . . . . . . . 17 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑘 ∈ ω) → (𝐺‘(𝐺𝑘)) = 𝑘)
14017, 139sylan 283 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘(𝐺𝑘)) = 𝑘)
141140fveq2d 5565 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘(𝐺‘(𝐺𝑘))) = (𝑦𝑘))
142141adantr 276 . . . . . . . . . . . . . 14 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑦‘(𝐺‘(𝐺𝑘))) = (𝑦𝑘))
143142eqeq1d 2205 . . . . . . . . . . . . 13 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝑦‘(𝐺‘(𝐺𝑘))) = ∅ ↔ (𝑦𝑘) = ∅))
144138, 143mtbid 673 . . . . . . . . . . . 12 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ¬ (𝑦𝑘) = ∅)
14539ffvelcdmda 5700 . . . . . . . . . . . . . . . 16 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦𝑘) ∈ 2o)
146 df2o3 6497 . . . . . . . . . . . . . . . 16 2o = {∅, 1o}
147145, 146eleqtrdi 2289 . . . . . . . . . . . . . . 15 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦𝑘) ∈ {∅, 1o})
148 elpri 3646 . . . . . . . . . . . . . . 15 ((𝑦𝑘) ∈ {∅, 1o} → ((𝑦𝑘) = ∅ ∨ (𝑦𝑘) = 1o))
149147, 148syl 14 . . . . . . . . . . . . . 14 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦𝑘) = ∅ ∨ (𝑦𝑘) = 1o))
150149orcomd 730 . . . . . . . . . . . . 13 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦𝑘) = 1o ∨ (𝑦𝑘) = ∅))
151150adantr 276 . . . . . . . . . . . 12 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → ((𝑦𝑘) = 1o ∨ (𝑦𝑘) = ∅))
152144, 151ecased 1360 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑦𝑘) = 1o)
15354, 94, 1523eqtr4rd 2240 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅}, ℝ, < ))) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
15451, 153sylan2br 288 . . . . . . . . 9 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
155 ssnel 4606 . . . . . . . . . . . 12 ((𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘 → ¬ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
156155adantl 277 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ¬ 𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
157156iffalsed 3572 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅) = ∅)
15893adantr 276 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )), 1o, ∅))
159 simp-4r 542 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑦 ∈ ℕ)
16072ad2antrr 488 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω)
161 simplr 528 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑘 ∈ ω)
162 simpr 110 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)
16336, 48eleqtrrdi 2290 . . . . . . . . . . . . . 14 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅})
164 2fveq3 5566 . . . . . . . . . . . . . . . 16 (𝑛 = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) → (𝑦‘(𝐺𝑛)) = (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))))
165164eqeq1d 2205 . . . . . . . . . . . . . . 15 (𝑛 = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) → ((𝑦‘(𝐺𝑛)) = ∅ ↔ (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅))
166165elrab 2920 . . . . . . . . . . . . . 14 (inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑛)) = ∅} ↔ (inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅))
167163, 166sylib 122 . . . . . . . . . . . . 13 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ (ℤ‘0) ∧ (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅))
168167simprd 114 . . . . . . . . . . . 12 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅)
169168ad2antrr 488 . . . . . . . . . . 11 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘(𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) = ∅)
170159, 160, 161, 162, 169nninfninc 7198 . . . . . . . . . 10 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦𝑘) = ∅)
171157, 158, 1703eqtr4rd 2240 . . . . . . . . 9 (((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
172 nntri3or 6560 . . . . . . . . . . . 12 ((𝑘 ∈ ω ∧ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))
17383, 88, 172syl2anc 411 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))
174 3orass 983 . . . . . . . . . . 11 ((𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) ↔ (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)))
175173, 174sylib 122 . . . . . . . . . 10 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)))
176 eqimss2 3239 . . . . . . . . . . . . . 14 (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)
177176a1i 9 . . . . . . . . . . . . 13 (𝑘 ∈ ω → (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
178 nnon 4647 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → 𝑘 ∈ On)
179 onelss 4423 . . . . . . . . . . . . . 14 (𝑘 ∈ On → ((𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
180178, 179syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ω → ((𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
181177, 180jaod 718 . . . . . . . . . . . 12 (𝑘 ∈ ω → ((𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
182181adantl 277 . . . . . . . . . . 11 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
183182orim2d 789 . . . . . . . . . 10 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)))
184175, 183mpd 13 . . . . . . . . 9 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ∨ (𝐺‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))
185154, 171, 184mpjaodan 799 . . . . . . . 8 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))‘𝑘))
18640, 45, 185eqfnfvd 5665 . . . . . . 7 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → 𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
187 fveq2 5561 . . . . . . . 8 (𝑧 = inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) → (𝐼𝑧) = (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < )))
188187rspceeqv 2886 . . . . . . 7 ((inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ) ∈ ℕ0*𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ‘0) ∣ (𝑦‘(𝐺𝑚)) = ∅}, ℝ, < ))) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
18937, 186, 188syl2anc 411 . . . . . 6 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ (𝑗 ∈ ω ∧ (𝑦𝑗) = ∅)) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
190189rexlimdvaa 2615 . . . . 5 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧)))
191190imp 124 . . . 4 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∃𝑗 ∈ ω (𝑦𝑗) = ∅) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
192 pnf0xnn0 9336 . . . . 5 +∞ ∈ ℕ0*
19324ffnd 5411 . . . . . . 7 (𝑦 ∈ ℕ𝑦 Fn ω)
194193ad2antlr 489 . . . . . 6 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → 𝑦 Fn ω)
195 1oex 6491 . . . . . . . 8 1o ∈ V
1961, 2, 3inftonninf 10551 . . . . . . . 8 (𝐼‘+∞) = (𝑥 ∈ ω ↦ 1o)
197195, 196fnmpti 5389 . . . . . . 7 (𝐼‘+∞) Fn ω
198197a1i 9 . . . . . 6 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → (𝐼‘+∞) Fn ω)
199 fveqeq2 5570 . . . . . . . 8 (𝑗 = 𝑘 → ((𝑦𝑗) = 1o ↔ (𝑦𝑘) = 1o))
200 simplr 528 . . . . . . . 8 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → ∀𝑗 ∈ ω (𝑦𝑗) = 1o)
201 simpr 110 . . . . . . . 8 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω)
202199, 200, 201rspcdva 2873 . . . . . . 7 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦𝑘) = 1o)
203 eqidd 2197 . . . . . . . . 9 (𝑥 = 𝑘 → 1o = 1o)
204203, 196, 195fvmpt 5641 . . . . . . . 8 (𝑘 ∈ ω → ((𝐼‘+∞)‘𝑘) = 1o)
205204adantl 277 . . . . . . 7 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → ((𝐼‘+∞)‘𝑘) = 1o)
206202, 205eqtr4d 2232 . . . . . 6 ((((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦𝑘) = ((𝐼‘+∞)‘𝑘))
207194, 198, 206eqfnfvd 5665 . . . . 5 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → 𝑦 = (𝐼‘+∞))
208 fveq2 5561 . . . . . 6 (𝑧 = +∞ → (𝐼𝑧) = (𝐼‘+∞))
209208rspceeqv 2886 . . . . 5 ((+∞ ∈ ℕ0*𝑦 = (𝐼‘+∞)) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
210192, 207, 209sylancr 414 . . . 4 (((ω ∈ Omni ∧ 𝑦 ∈ ℕ) ∧ ∀𝑗 ∈ ω (𝑦𝑗) = 1o) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
211 isomni 7211 . . . . . . . 8 (ω ∈ V → (ω ∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o))))
21273, 211ax-mp 5 . . . . . . 7 (ω ∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o)))
213212biimpi 120 . . . . . 6 (ω ∈ Omni → ∀𝑦(𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o)))
21421319.21bi 1572 . . . . 5 (ω ∈ Omni → (𝑦:ω⟶2o → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o)))
215214, 24impel 280 . . . 4 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → (∃𝑗 ∈ ω (𝑦𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦𝑗) = 1o))
216191, 210, 215mpjaodan 799 . . 3 ((ω ∈ Omni ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
217216ralrimiva 2570 . 2 (ω ∈ Omni → ∀𝑦 ∈ ℕ𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧))
218 dffo3 5712 . 2 (𝐼:ℕ0*onto→ℕ ↔ (𝐼:ℕ0*⟶ℕ ∧ ∀𝑦 ∈ ℕ𝑧 ∈ ℕ0* 𝑦 = (𝐼𝑧)))
2195, 217, 218sylanbrc 417 1 (ω ∈ Omni → 𝐼:ℕ0*onto→ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  wal 1362   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  cun 3155  wss 3157  c0 3451  ifcif 3562  {csn 3623  {cpr 3624  cop 3626   class class class wbr 4034  cmpt 4095  Oncon0 4399  ωcom 4627   × cxp 4662  ccnv 4663  ccom 4668   Fn wfn 5254  wf 5255  ontowfo 5257  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  freccfrec 6457  1oc1o 6476  2oc2o 6477  infcinf 7058  xnninf 7194  Omnicomni 7209  cr 7895  0cc0 7896  1c1 7897   + caddc 7899  +∞cpnf 8075   < clt 8078  0cn0 9266  0*cxnn0 9329  cz 9343  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-map 6718  df-sup 7059  df-inf 7060  df-nninf 7195  df-omni 7210  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-xnn0 9330  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235
This theorem is referenced by:  nninfct  12233
  Copyright terms: Public domain W3C validator