| Step | Hyp | Ref
| Expression |
| 1 | | nninfct.g |
. . . 4
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| 2 | | nninfct.f |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 3 | | nninfct.i |
. . . 4
⊢ 𝐼 = ((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉}) |
| 4 | 1, 2, 3 | fxnn0nninf 10531 |
. . 3
⊢ 𝐼:ℕ0*⟶ℕ∞ |
| 5 | 4 | a1i 9 |
. 2
⊢ (ω
∈ Omni → 𝐼:ℕ0*⟶ℕ∞) |
| 6 | | ssrab2 3268 |
. . . . . . . . 9
⊢ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} ⊆
(ℤ≥‘0) |
| 7 | | nn0uz 9636 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 8 | | nn0ssxnn0 9315 |
. . . . . . . . . 10
⊢
ℕ0 ⊆
ℕ0* |
| 9 | 7, 8 | eqsstrri 3216 |
. . . . . . . . 9
⊢
(ℤ≥‘0) ⊆
ℕ0* |
| 10 | 6, 9 | sstri 3192 |
. . . . . . . 8
⊢ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} ⊆
ℕ0* |
| 11 | | 0zd 9338 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 0 ∈
ℤ) |
| 12 | | eqid 2196 |
. . . . . . . . 9
⊢ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} = {𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} |
| 13 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝐺‘𝑗) → (◡𝐺‘𝑚) = (◡𝐺‘(𝐺‘𝑗))) |
| 14 | 13 | fveqeq2d 5566 |
. . . . . . . . . 10
⊢ (𝑚 = (𝐺‘𝑗) → ((𝑦‘(◡𝐺‘𝑚)) = ∅ ↔ (𝑦‘(◡𝐺‘(𝐺‘𝑗))) = ∅)) |
| 15 | | simprl 529 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑗 ∈ ω) |
| 16 | 11, 1, 15 | frec2uzuzd 10494 |
. . . . . . . . . 10
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐺‘𝑗) ∈
(ℤ≥‘0)) |
| 17 | 11, 1 | frec2uzf1od 10498 |
. . . . . . . . . . . . 13
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
| 18 | | f1ocnvfv1 5824 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑗 ∈ ω) → (◡𝐺‘(𝐺‘𝑗)) = 𝑗) |
| 19 | 17, 15, 18 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (◡𝐺‘(𝐺‘𝑗)) = 𝑗) |
| 20 | 19 | fveq2d 5562 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘(◡𝐺‘(𝐺‘𝑗))) = (𝑦‘𝑗)) |
| 21 | | simprr 531 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘𝑗) = ∅) |
| 22 | 20, 21 | eqtrd 2229 |
. . . . . . . . . 10
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘(◡𝐺‘(𝐺‘𝑗))) = ∅) |
| 23 | 14, 16, 22 | elrabd 2922 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐺‘𝑗) ∈ {𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}) |
| 24 | | nninff 7188 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
ℕ∞ → 𝑦:ω⟶2o) |
| 25 | | 2ssom 6582 |
. . . . . . . . . . . . . 14
⊢
2o ⊆ ω |
| 26 | 25 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
ℕ∞ → 2o ⊆
ω) |
| 27 | 24, 26 | fssd 5420 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
ℕ∞ → 𝑦:ω⟶ω) |
| 28 | 27 | ad3antlr 493 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → 𝑦:ω⟶ω) |
| 29 | | elfzuz 10096 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...(𝐺‘𝑗)) → 𝑚 ∈
(ℤ≥‘0)) |
| 30 | | f1ocnvdm 5828 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑚 ∈
(ℤ≥‘0)) → (◡𝐺‘𝑚) ∈ ω) |
| 31 | 17, 29, 30 | syl2an 289 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → (◡𝐺‘𝑚) ∈ ω) |
| 32 | 28, 31 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → (𝑦‘(◡𝐺‘𝑚)) ∈ ω) |
| 33 | | peano1 4630 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
| 34 | | nndceq 6557 |
. . . . . . . . . 10
⊢ (((𝑦‘(◡𝐺‘𝑚)) ∈ ω ∧ ∅ ∈
ω) → DECID (𝑦‘(◡𝐺‘𝑚)) = ∅) |
| 35 | 32, 33, 34 | sylancl 413 |
. . . . . . . . 9
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑚 ∈ (0...(𝐺‘𝑗))) → DECID (𝑦‘(◡𝐺‘𝑚)) = ∅) |
| 36 | 11, 12, 23, 35 | infssuzcldc 10325 |
. . . . . . . 8
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈ {𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}) |
| 37 | 10, 36 | sselid 3181 |
. . . . . . 7
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0*) |
| 38 | 24 | adantl 277 |
. . . . . . . . . 10
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → 𝑦:ω⟶2o) |
| 39 | 38 | adantr 276 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑦:ω⟶2o) |
| 40 | 39 | ffnd 5408 |
. . . . . . . 8
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑦 Fn ω) |
| 41 | 4 | a1i 9 |
. . . . . . . . . . 11
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝐼:ℕ0*⟶ℕ∞) |
| 42 | 41, 37 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ℕ∞) |
| 43 | | nninff 7188 |
. . . . . . . . . 10
⊢ ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ℕ∞ → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)):ω⟶2o) |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)):ω⟶2o) |
| 45 | 44 | ffnd 5408 |
. . . . . . . 8
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) Fn
ω) |
| 46 | | 2fveq3 5563 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝑦‘(◡𝐺‘𝑛)) = (𝑦‘(◡𝐺‘𝑚))) |
| 47 | 46 | eqeq1d 2205 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((𝑦‘(◡𝐺‘𝑛)) = ∅ ↔ (𝑦‘(◡𝐺‘𝑚)) = ∅)) |
| 48 | 47 | cbvrabv 2762 |
. . . . . . . . . . . . 13
⊢ {𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} = {𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅} |
| 49 | 48 | infeq1i 7079 |
. . . . . . . . . . . 12
⊢
inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) = inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
) |
| 50 | 49 | fveq2i 5561 |
. . . . . . . . . . 11
⊢ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)) |
| 51 | 50 | eleq2i 2263 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 52 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
))) |
| 53 | 52, 51 | sylib 122 |
. . . . . . . . . . . 12
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 54 | 53 | iftrued 3568 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) = 1o) |
| 55 | 3 | fveq1i 5559 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)) |
| 56 | 6, 36 | sselid 3181 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) |
| 57 | 56, 7 | eleqtrrdi 2290 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0) |
| 58 | 57 | nn0nepnfd 9322 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ≠
+∞) |
| 59 | 58 | necomd 2453 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → +∞ ≠ inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)) |
| 60 | | fvunsng 5756 |
. . . . . . . . . . . . . . . . . 18
⊢
((inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0 ∧ +∞ ≠ inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) →
(((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 61 | 57, 59, 60 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (((𝐹 ∘ ◡𝐺) ∪ {〈+∞, (ω ×
{1o})〉})‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 62 | 55, 61 | eqtrid 2241 |
. . . . . . . . . . . . . . . 16
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 63 | | dff1o4 5512 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘0) ↔ (𝐺 Fn ω ∧ ◡𝐺 Fn
(ℤ≥‘0))) |
| 64 | 17, 63 | sylib 122 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐺 Fn ω ∧ ◡𝐺 Fn
(ℤ≥‘0))) |
| 65 | 64 | simprd 114 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ◡𝐺 Fn
(ℤ≥‘0)) |
| 66 | | fvco2 5630 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐺 Fn (ℤ≥‘0) ∧
inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) → ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (𝐹‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
| 67 | 65, 56, 66 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ((𝐹 ∘ ◡𝐺)‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (𝐹‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
| 68 | | eleq2 2260 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
| 69 | 68 | ifbid 3582 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) →
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 70 | 69 | mpteq2dv 4124 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))) |
| 71 | | f1ocnvdm 5828 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧
inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
| 72 | 17, 56, 71 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
| 73 | | omex 4629 |
. . . . . . . . . . . . . . . . . . 19
⊢ ω
∈ V |
| 74 | 73 | mptex 5788 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) ∈ V |
| 75 | 74 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) ∈ V) |
| 76 | 2, 70, 72, 75 | fvmptd3 5655 |
. . . . . . . . . . . . . . . 16
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐹‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))) |
| 77 | 62, 67, 76 | 3eqtrd 2233 |
. . . . . . . . . . . . . . 15
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))) |
| 78 | 77 | fveq1d 5560 |
. . . . . . . . . . . . . 14
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))‘𝑘)) |
| 79 | 78 | adantr 276 |
. . . . . . . . . . . . 13
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))‘𝑘)) |
| 80 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 81 | | eleq1w 2257 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑘 → (𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ↔ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
| 82 | 81 | ifbid 3582 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 83 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω) |
| 84 | | 1lt2o 6500 |
. . . . . . . . . . . . . . . 16
⊢
1o ∈ 2o |
| 85 | 84 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → 1o ∈
2o) |
| 86 | | 0lt2o 6499 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ 2o |
| 87 | 86 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ∅ ∈
2o) |
| 88 | 72 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
| 89 | | nndcel 6558 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ω ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) → DECID 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 90 | 83, 88, 89 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → DECID
𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 91 | 85, 87, 90 | ifcldcd 3597 |
. . . . . . . . . . . . . 14
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) ∈ 2o) |
| 92 | 80, 82, 83, 91 | fvmptd3 5655 |
. . . . . . . . . . . . 13
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 93 | 79, 92 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 94 | 93 | adantr 276 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝐼‘inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 95 | | 0zd 9338 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 0
∈ ℤ) |
| 96 | | simplr 528 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝑘 ∈
ω) |
| 97 | 50, 88 | eqeltrid 2283 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ∈
ω) |
| 98 | 97 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ∈
ω) |
| 99 | 95, 1, 96, 98 | frec2uzlt2d 10496 |
. . . . . . . . . . . . . . . . 17
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < )) ↔ (𝐺‘𝑘) < (𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
))))) |
| 100 | 52, 99 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝐺‘𝑘) < (𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)))) |
| 101 | 17 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
| 102 | 49, 56 | eqeltrid 2283 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) |
| 103 | 102 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) |
| 104 | | f1ocnvfv2 5825 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧
inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0)) → (𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
| 105 | 101, 103,
104 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝐺‘(◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) = inf({𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
| 106 | 100, 105 | breqtrd 4059 |
. . . . . . . . . . . . . . 15
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝐺‘𝑘) < inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
| 107 | 49, 57 | eqeltrid 2283 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
ℕ0) |
| 108 | 107 | ad3antrrr 492 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
ℕ0) |
| 109 | 108 | nn0red 9303 |
. . . . . . . . . . . . . . . . 17
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ∈
ℝ) |
| 110 | | elrabi 2917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} → (𝐺‘𝑘) ∈
(ℤ≥‘0)) |
| 111 | 110, 7 | eleqtrrdi 2290 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} → (𝐺‘𝑘) ∈
ℕ0) |
| 112 | 111 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → (𝐺‘𝑘) ∈
ℕ0) |
| 113 | 112 | nn0red 9303 |
. . . . . . . . . . . . . . . . 17
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → (𝐺‘𝑘) ∈ ℝ) |
| 114 | | 0zd 9338 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → 0 ∈
ℤ) |
| 115 | | simpr 110 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) |
| 116 | 39 | ad4antr 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → 𝑦:ω⟶2o) |
| 117 | 17 | ad4antr 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
| 118 | | elfzuz 10096 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ (0...(𝐺‘𝑘)) → 𝑚 ∈
(ℤ≥‘0)) |
| 119 | 118 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → 𝑚 ∈
(ℤ≥‘0)) |
| 120 | 117, 119,
30 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → (◡𝐺‘𝑚) ∈ ω) |
| 121 | 116, 120 | ffvelcdmd 5698 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → (𝑦‘(◡𝐺‘𝑚)) ∈ 2o) |
| 122 | 25, 121 | sselid 3181 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → (𝑦‘(◡𝐺‘𝑚)) ∈ ω) |
| 123 | 122, 33, 34 | sylancl 413 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) ∧ 𝑚 ∈ (0...(𝐺‘𝑘))) → DECID (𝑦‘(◡𝐺‘𝑚)) = ∅) |
| 124 | 114, 48, 115, 123 | infssuzledc 10324 |
. . . . . . . . . . . . . . . . 17
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ) ≤ (𝐺‘𝑘)) |
| 125 | 109, 113,
124 | lensymd 8148 |
. . . . . . . . . . . . . . . 16
⊢
((((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) ∧ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) → ¬ (𝐺‘𝑘) < inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
)) |
| 126 | 125 | ex 115 |
. . . . . . . . . . . . . . 15
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} → ¬ (𝐺‘𝑘) < inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, <
))) |
| 127 | 106, 126 | mt2d 626 |
. . . . . . . . . . . . . 14
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → ¬
(𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) |
| 128 | | 2fveq3 5563 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝐺‘𝑘) → (𝑦‘(◡𝐺‘𝑛)) = (𝑦‘(◡𝐺‘(𝐺‘𝑘)))) |
| 129 | 128 | eqeq1d 2205 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝐺‘𝑘) → ((𝑦‘(◡𝐺‘𝑛)) = ∅ ↔ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
| 130 | 129 | elrab 2920 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ ((𝐺‘𝑘) ∈ (ℤ≥‘0)
∧ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
| 131 | | f1of 5504 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘0) → 𝐺:ω⟶(ℤ≥‘0)) |
| 132 | 17, 131 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝐺:ω⟶(ℤ≥‘0)) |
| 133 | 132 | ffvelcdmda 5697 |
. . . . . . . . . . . . . . . . . 18
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝐺‘𝑘) ∈
(ℤ≥‘0)) |
| 134 | 133 | biantrurd 305 |
. . . . . . . . . . . . . . . . 17
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅ ↔ ((𝐺‘𝑘) ∈ (ℤ≥‘0)
∧ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅))) |
| 135 | 130, 134 | bitr4id 199 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
| 136 | 135 | notbid 668 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (¬ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ ¬ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
| 137 | 136 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(¬ (𝐺‘𝑘) ∈ {𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ ¬ (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅)) |
| 138 | 127, 137 | mpbid 147 |
. . . . . . . . . . . . 13
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → ¬
(𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅) |
| 139 | | f1ocnvfv1 5824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑘 ∈ ω) → (◡𝐺‘(𝐺‘𝑘)) = 𝑘) |
| 140 | 17, 139 | sylan 283 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (◡𝐺‘(𝐺‘𝑘)) = 𝑘) |
| 141 | 140 | fveq2d 5562 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘(◡𝐺‘(𝐺‘𝑘))) = (𝑦‘𝑘)) |
| 142 | 141 | adantr 276 |
. . . . . . . . . . . . . 14
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑦‘(◡𝐺‘(𝐺‘𝑘))) = (𝑦‘𝑘)) |
| 143 | 142 | eqeq1d 2205 |
. . . . . . . . . . . . 13
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝑦‘(◡𝐺‘(𝐺‘𝑘))) = ∅ ↔ (𝑦‘𝑘) = ∅)) |
| 144 | 138, 143 | mtbid 673 |
. . . . . . . . . . . 12
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) → ¬
(𝑦‘𝑘) = ∅) |
| 145 | 39 | ffvelcdmda 5697 |
. . . . . . . . . . . . . . . 16
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) ∈ 2o) |
| 146 | | df2o3 6488 |
. . . . . . . . . . . . . . . 16
⊢
2o = {∅, 1o} |
| 147 | 145, 146 | eleqtrdi 2289 |
. . . . . . . . . . . . . . 15
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) ∈ {∅,
1o}) |
| 148 | | elpri 3645 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦‘𝑘) ∈ {∅, 1o} →
((𝑦‘𝑘) = ∅ ∨ (𝑦‘𝑘) = 1o)) |
| 149 | 147, 148 | syl 14 |
. . . . . . . . . . . . . 14
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘𝑘) = ∅ ∨ (𝑦‘𝑘) = 1o)) |
| 150 | 149 | orcomd 730 |
. . . . . . . . . . . . 13
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑦‘𝑘) = 1o ∨ (𝑦‘𝑘) = ∅)) |
| 151 | 150 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
((𝑦‘𝑘) = 1o ∨ (𝑦‘𝑘) = ∅)) |
| 152 | 144, 151 | ecased 1360 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑦‘𝑘) = 1o) |
| 153 | 54, 94, 152 | 3eqtr4rd 2240 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑛 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}, ℝ, < ))) →
(𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
| 154 | 51, 153 | sylan2br 288 |
. . . . . . . . 9
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) →
(𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
| 155 | | ssnel 4605 |
. . . . . . . . . . . 12
⊢ ((◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘 → ¬ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 156 | 155 | adantl 277 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ¬ 𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 157 | 156 | iffalsed 3571 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅) = ∅) |
| 158 | 93 | adantr 276 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘) = if(𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )),
1o, ∅)) |
| 159 | | simp-4r 542 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑦 ∈
ℕ∞) |
| 160 | 72 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) |
| 161 | | simplr 528 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → 𝑘 ∈ ω) |
| 162 | | simpr 110 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) |
| 163 | 36, 48 | eleqtrrdi 2290 |
. . . . . . . . . . . . . 14
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅}) |
| 164 | | 2fveq3 5563 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) → (𝑦‘(◡𝐺‘𝑛)) = (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
)))) |
| 165 | 164 | eqeq1d 2205 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) → ((𝑦‘(◡𝐺‘𝑛)) = ∅ ↔ (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅)) |
| 166 | 165 | elrab 2920 |
. . . . . . . . . . . . . 14
⊢
(inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈ {𝑛 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑛)) = ∅} ↔ (inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0) ∧ (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅)) |
| 167 | 163, 166 | sylib 122 |
. . . . . . . . . . . . 13
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
(ℤ≥‘0) ∧ (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅)) |
| 168 | 167 | simprd 114 |
. . . . . . . . . . . 12
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅) |
| 169 | 168 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) =
∅) |
| 170 | 159, 160,
161, 162, 169 | nninfninc 7189 |
. . . . . . . . . 10
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘𝑘) = ∅) |
| 171 | 157, 158,
170 | 3eqtr4rd 2240 |
. . . . . . . . 9
⊢
(((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) → (𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
| 172 | | nntri3or 6551 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ω ∧ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈
ω) → (𝑘 ∈
(◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) |
| 173 | 83, 88, 172 | syl2anc 411 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) |
| 174 | | 3orass 983 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ 𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) ↔ (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))) |
| 175 | 173, 174 | sylib 122 |
. . . . . . . . . 10
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘))) |
| 176 | | eqimss2 3238 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘) |
| 177 | 176 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ω → (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
| 178 | | nnon 4646 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ω → 𝑘 ∈ On) |
| 179 | | onelss 4422 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ On → ((◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
| 180 | 178, 179 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ω → ((◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘 → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
| 181 | 177, 180 | jaod 718 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ω → ((𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
| 182 | 181 | adantl 277 |
. . . . . . . . . . 11
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘) → (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
| 183 | 182 | orim2d 789 |
. . . . . . . . . 10
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → ((𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (𝑘 = (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∈ 𝑘)) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘))) |
| 184 | 175, 183 | mpd 13 |
. . . . . . . . 9
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑘 ∈ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ∨ (◡𝐺‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < )) ⊆ 𝑘)) |
| 185 | 154, 171,
184 | mpjaodan 799 |
. . . . . . . 8
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) = ((𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))‘𝑘)) |
| 186 | 40, 45, 185 | eqfnfvd 5662 |
. . . . . . 7
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → 𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 187 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑧 = inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) → (𝐼‘𝑧) = (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, <
))) |
| 188 | 187 | rspceeqv 2886 |
. . . . . . 7
⊢
((inf({𝑚 ∈
(ℤ≥‘0) ∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ) ∈
ℕ0* ∧ 𝑦 = (𝐼‘inf({𝑚 ∈ (ℤ≥‘0)
∣ (𝑦‘(◡𝐺‘𝑚)) = ∅}, ℝ, < ))) →
∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 189 | 37, 186, 188 | syl2anc 411 |
. . . . . 6
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
(𝑗 ∈ ω ∧
(𝑦‘𝑗) = ∅)) → ∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 190 | 189 | rexlimdvaa 2615 |
. . . . 5
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → (∃𝑗 ∈ ω (𝑦‘𝑗) = ∅ → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼‘𝑧))) |
| 191 | 190 | imp 124 |
. . . 4
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 192 | | pnf0xnn0 9319 |
. . . . 5
⊢ +∞
∈ ℕ0* |
| 193 | 24 | ffnd 5408 |
. . . . . . 7
⊢ (𝑦 ∈
ℕ∞ → 𝑦 Fn ω) |
| 194 | 193 | ad2antlr 489 |
. . . . . 6
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → 𝑦 Fn ω) |
| 195 | | 1oex 6482 |
. . . . . . . 8
⊢
1o ∈ V |
| 196 | 1, 2, 3 | inftonninf 10534 |
. . . . . . . 8
⊢ (𝐼‘+∞) = (𝑥 ∈ ω ↦
1o) |
| 197 | 195, 196 | fnmpti 5386 |
. . . . . . 7
⊢ (𝐼‘+∞) Fn
ω |
| 198 | 197 | a1i 9 |
. . . . . 6
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → (𝐼‘+∞) Fn
ω) |
| 199 | | fveqeq2 5567 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝑦‘𝑗) = 1o ↔ (𝑦‘𝑘) = 1o)) |
| 200 | | simplr 528 |
. . . . . . . 8
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o) |
| 201 | | simpr 110 |
. . . . . . . 8
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → 𝑘 ∈ ω) |
| 202 | 199, 200,
201 | rspcdva 2873 |
. . . . . . 7
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) = 1o) |
| 203 | | eqidd 2197 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → 1o =
1o) |
| 204 | 203, 196,
195 | fvmpt 5638 |
. . . . . . . 8
⊢ (𝑘 ∈ ω → ((𝐼‘+∞)‘𝑘) =
1o) |
| 205 | 204 | adantl 277 |
. . . . . . 7
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → ((𝐼‘+∞)‘𝑘) = 1o) |
| 206 | 202, 205 | eqtr4d 2232 |
. . . . . 6
⊢
((((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) ∧ 𝑘 ∈ ω) → (𝑦‘𝑘) = ((𝐼‘+∞)‘𝑘)) |
| 207 | 194, 198,
206 | eqfnfvd 5662 |
. . . . 5
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → 𝑦 = (𝐼‘+∞)) |
| 208 | | fveq2 5558 |
. . . . . 6
⊢ (𝑧 = +∞ → (𝐼‘𝑧) = (𝐼‘+∞)) |
| 209 | 208 | rspceeqv 2886 |
. . . . 5
⊢
((+∞ ∈ ℕ0* ∧ 𝑦 = (𝐼‘+∞)) → ∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 210 | 192, 207,
209 | sylancr 414 |
. . . 4
⊢
(((ω ∈ Omni ∧ 𝑦 ∈ ℕ∞) ∧
∀𝑗 ∈ ω
(𝑦‘𝑗) = 1o) → ∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 211 | | isomni 7202 |
. . . . . . . 8
⊢ (ω
∈ V → (ω ∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o)))) |
| 212 | 73, 211 | ax-mp 5 |
. . . . . . 7
⊢ (ω
∈ Omni ↔ ∀𝑦(𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o))) |
| 213 | 212 | biimpi 120 |
. . . . . 6
⊢ (ω
∈ Omni → ∀𝑦(𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o))) |
| 214 | 213 | 19.21bi 1572 |
. . . . 5
⊢ (ω
∈ Omni → (𝑦:ω⟶2o →
(∃𝑗 ∈ ω
(𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o))) |
| 215 | 214, 24 | impel 280 |
. . . 4
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → (∃𝑗 ∈ ω (𝑦‘𝑗) = ∅ ∨ ∀𝑗 ∈ ω (𝑦‘𝑗) = 1o)) |
| 216 | 191, 210,
215 | mpjaodan 799 |
. . 3
⊢ ((ω
∈ Omni ∧ 𝑦 ∈
ℕ∞) → ∃𝑧 ∈ ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 217 | 216 | ralrimiva 2570 |
. 2
⊢ (ω
∈ Omni → ∀𝑦 ∈ ℕ∞
∃𝑧 ∈
ℕ0* 𝑦 = (𝐼‘𝑧)) |
| 218 | | dffo3 5709 |
. 2
⊢ (𝐼:ℕ0*–onto→ℕ∞ ↔
(𝐼:ℕ0*⟶ℕ∞
∧ ∀𝑦 ∈ ℕ∞
∃𝑧 ∈ ℕ0*
𝑦 = (𝐼‘𝑧))) |
| 219 | 5, 217, 218 | sylanbrc 417 |
1
⊢ (ω
∈ Omni → 𝐼:ℕ0*–onto→ℕ∞) |