ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znbaslemnn GIF version

Theorem znbaslemnn 14127
Description: Lemma for znbas 14132. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
znval2.s 𝑆 = (RSpan‘ℤring)
znval2.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval2.y 𝑌 = (ℤ/nℤ‘𝑁)
znbaslem.e 𝐸 = Slot (𝐸‘ndx)
znbaslemnn.nn (𝐸‘ndx) ∈ ℕ
znbaslem.n (𝐸‘ndx) ≠ (le‘ndx)
Assertion
Ref Expression
znbaslemnn (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸𝑌))

Proof of Theorem znbaslemnn
StepHypRef Expression
1 znval2.u . . . 4 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
2 zringring 14081 . . . . 5 ring ∈ Ring
3 znval2.s . . . . . . . 8 𝑆 = (RSpan‘ℤring)
4 rspex 13970 . . . . . . . . 9 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
52, 4ax-mp 5 . . . . . . . 8 (RSpan‘ℤring) ∈ V
63, 5eqeltri 2266 . . . . . . 7 𝑆 ∈ V
7 snexg 4213 . . . . . . 7 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
8 fvexg 5573 . . . . . . 7 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
96, 7, 8sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
10 eqgex 13291 . . . . . 6 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
112, 9, 10sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
12 qusex 12908 . . . . 5 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
132, 11, 12sylancr 414 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
141, 13eqeltrid 2280 . . 3 (𝑁 ∈ ℕ0𝑈 ∈ V)
15 znval2.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
16 eqid 2193 . . . . . 6 ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
17 eqid 2193 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
18 eqid 2193 . . . . . 6 ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) = ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))
193, 1, 15, 16, 17, 18znval 14124 . . . . 5 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))⟩))
20 plendxnn 12820 . . . . . . 7 (le‘ndx) ∈ ℕ
2120a1i 9 . . . . . 6 (𝑁 ∈ ℕ0 → (le‘ndx) ∈ ℕ)
22 eqid 2193 . . . . . . . . . . 11 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
2322zrhex 14109 . . . . . . . . . 10 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
2414, 23syl 14 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) ∈ V)
25 resexg 4982 . . . . . . . . 9 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V)
2624, 25syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V)
27 xrex 9922 . . . . . . . . . 10 * ∈ V
2827, 27xpex 4774 . . . . . . . . 9 (ℝ* × ℝ*) ∈ V
29 lerelxr 8082 . . . . . . . . 9 ≤ ⊆ (ℝ* × ℝ*)
3028, 29ssexi 4167 . . . . . . . 8 ≤ ∈ V
31 coexg 5210 . . . . . . . 8 ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V ∧ ≤ ∈ V) → (((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∈ V)
3226, 30, 31sylancl 413 . . . . . . 7 (𝑁 ∈ ℕ0 → (((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∈ V)
33 cnvexg 5203 . . . . . . . 8 (((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V → ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V)
3426, 33syl 14 . . . . . . 7 (𝑁 ∈ ℕ0((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V)
35 coexg 5210 . . . . . . 7 (((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∈ V ∧ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V) → ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) ∈ V)
3632, 34, 35syl2anc 411 . . . . . 6 (𝑁 ∈ ℕ0 → ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) ∈ V)
37 setsex 12650 . . . . . 6 ((𝑈 ∈ V ∧ (le‘ndx) ∈ ℕ ∧ ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) ∈ V) → (𝑈 sSet ⟨(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))⟩) ∈ V)
3814, 21, 36, 37syl3anc 1249 . . . . 5 (𝑁 ∈ ℕ0 → (𝑈 sSet ⟨(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))⟩) ∈ V)
3919, 38eqeltrd 2270 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ V)
40 pleslid 12819 . . . . 5 (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
4140slotex 12645 . . . 4 (𝑌 ∈ V → (le‘𝑌) ∈ V)
4239, 41syl 14 . . 3 (𝑁 ∈ ℕ0 → (le‘𝑌) ∈ V)
43 znbaslem.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
44 znbaslemnn.nn . . . . 5 (𝐸‘ndx) ∈ ℕ
4543, 44ndxslid 12643 . . . 4 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
46 znbaslem.n . . . 4 (𝐸‘ndx) ≠ (le‘ndx)
4745, 46, 20setsslnid 12670 . . 3 ((𝑈 ∈ V ∧ (le‘𝑌) ∈ V) → (𝐸𝑈) = (𝐸‘(𝑈 sSet ⟨(le‘ndx), (le‘𝑌)⟩)))
4814, 42, 47syl2anc 411 . 2 (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸‘(𝑈 sSet ⟨(le‘ndx), (le‘𝑌)⟩)))
49 eqid 2193 . . . 4 (le‘𝑌) = (le‘𝑌)
503, 1, 15, 49znval2 14126 . . 3 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), (le‘𝑌)⟩))
5150fveq2d 5558 . 2 (𝑁 ∈ ℕ0 → (𝐸𝑌) = (𝐸‘(𝑈 sSet ⟨(le‘ndx), (le‘𝑌)⟩)))
5248, 51eqtr4d 2229 1 (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wne 2364  Vcvv 2760  ifcif 3557  {csn 3618  cop 3621   × cxp 4657  ccnv 4658  cres 4661  ccom 4663  cfv 5254  (class class class)co 5918  0cc0 7872  *cxr 8053  cle 8055  cn 8982  0cn0 9240  cz 9317  ..^cfzo 10208  ndxcnx 12615   sSet csts 12616  Slot cslot 12617  lecple 12702   /s cqus 12883   ~QG cqg 13239  Ringcrg 13492  RSpancrsp 13964  ringczring 14078  ℤRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-ec 6589  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-eqg 13242  df-cmn 13356  df-mgp 13417  df-ur 13456  df-ring 13494  df-cring 13495  df-rhm 13648  df-subrg 13715  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-rsp 13966  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znbas2  14128  znadd  14129  znmul  14130
  Copyright terms: Public domain W3C validator