Proof of Theorem znbaslemnn
| Step | Hyp | Ref
| Expression |
| 1 | | znval2.u |
. . . 4
⊢ 𝑈 = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁}))) |
| 2 | | zringring 14149 |
. . . . 5
⊢
ℤring ∈ Ring |
| 3 | | znval2.s |
. . . . . . . 8
⊢ 𝑆 =
(RSpan‘ℤring) |
| 4 | | rspex 14030 |
. . . . . . . . 9
⊢
(ℤring ∈ Ring →
(RSpan‘ℤring) ∈ V) |
| 5 | 2, 4 | ax-mp 5 |
. . . . . . . 8
⊢
(RSpan‘ℤring) ∈ V |
| 6 | 3, 5 | eqeltri 2269 |
. . . . . . 7
⊢ 𝑆 ∈ V |
| 7 | | snexg 4217 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ {𝑁} ∈
V) |
| 8 | | fvexg 5577 |
. . . . . . 7
⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) |
| 9 | 6, 7, 8 | sylancr 414 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑆‘{𝑁}) ∈ V) |
| 10 | | eqgex 13351 |
. . . . . 6
⊢
((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring
~QG (𝑆‘{𝑁})) ∈ V) |
| 11 | 2, 9, 10 | sylancr 414 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 12 | | qusex 12968 |
. . . . 5
⊢
((ℤring ∈ Ring ∧ (ℤring
~QG (𝑆‘{𝑁})) ∈ V) → (ℤring
/s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
| 13 | 2, 11, 12 | sylancr 414 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (ℤring /s (ℤring
~QG (𝑆‘{𝑁}))) ∈ V) |
| 14 | 1, 13 | eqeltrid 2283 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ 𝑈 ∈
V) |
| 15 | | znval2.y |
. . . . . 6
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 16 | | eqid 2196 |
. . . . . 6
⊢
((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) |
| 17 | | eqid 2196 |
. . . . . 6
⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| 18 | | eqid 2196 |
. . . . . 6
⊢
((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) = ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) |
| 19 | 3, 1, 15, 16, 17, 18 | znval 14192 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑌 = (𝑈 sSet 〈(le‘ndx),
((((ℤRHom‘𝑈)
↾ if(𝑁 = 0, ℤ,
(0..^𝑁))) ∘ ≤ )
∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉)) |
| 20 | | plendxnn 12880 |
. . . . . . 7
⊢
(le‘ndx) ∈ ℕ |
| 21 | 20 | a1i 9 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (le‘ndx) ∈ ℕ) |
| 22 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(ℤRHom‘𝑈) = (ℤRHom‘𝑈) |
| 23 | 22 | zrhex 14177 |
. . . . . . . . . 10
⊢ (𝑈 ∈ V →
(ℤRHom‘𝑈)
∈ V) |
| 24 | 14, 23 | syl 14 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑈) ∈ V) |
| 25 | | resexg 4986 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V) |
| 26 | 24, 25 | syl 14 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V) |
| 27 | | xrex 9931 |
. . . . . . . . . 10
⊢
ℝ* ∈ V |
| 28 | 27, 27 | xpex 4778 |
. . . . . . . . 9
⊢
(ℝ* × ℝ*) ∈
V |
| 29 | | lerelxr 8089 |
. . . . . . . . 9
⊢ ≤
⊆ (ℝ* × ℝ*) |
| 30 | 28, 29 | ssexi 4171 |
. . . . . . . 8
⊢ ≤
∈ V |
| 31 | | coexg 5214 |
. . . . . . . 8
⊢
((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V ∧ ≤ ∈ V) →
(((ℤRHom‘𝑈)
↾ if(𝑁 = 0, ℤ,
(0..^𝑁))) ∘ ≤ )
∈ V) |
| 32 | 26, 30, 31 | sylancl 413 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∈
V) |
| 33 | | cnvexg 5207 |
. . . . . . . 8
⊢
(((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V → ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V) |
| 34 | 26, 33 | syl 14 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V) |
| 35 | | coexg 5214 |
. . . . . . 7
⊢
(((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∈ V ∧ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∈ V) →
((((ℤRHom‘𝑈)
↾ if(𝑁 = 0, ℤ,
(0..^𝑁))) ∘ ≤ )
∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) ∈ V) |
| 36 | 32, 34, 35 | syl2anc 411 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) ∈ V) |
| 37 | | setsex 12710 |
. . . . . 6
⊢ ((𝑈 ∈ V ∧ (le‘ndx)
∈ ℕ ∧ ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) ∈ V) → (𝑈 sSet 〈(le‘ndx),
((((ℤRHom‘𝑈)
↾ if(𝑁 = 0, ℤ,
(0..^𝑁))) ∘ ≤ )
∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉) ∈ V) |
| 38 | 14, 21, 36, 37 | syl3anc 1249 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑈 sSet
〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉) ∈ V) |
| 39 | 19, 38 | eqeltrd 2273 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
V) |
| 40 | | pleslid 12879 |
. . . . 5
⊢ (le =
Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
| 41 | 40 | slotex 12705 |
. . . 4
⊢ (𝑌 ∈ V → (le‘𝑌) ∈ V) |
| 42 | 39, 41 | syl 14 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (le‘𝑌) ∈
V) |
| 43 | | znbaslem.e |
. . . . 5
⊢ 𝐸 = Slot (𝐸‘ndx) |
| 44 | | znbaslemnn.nn |
. . . . 5
⊢ (𝐸‘ndx) ∈
ℕ |
| 45 | 43, 44 | ndxslid 12703 |
. . . 4
⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| 46 | | znbaslem.n |
. . . 4
⊢ (𝐸‘ndx) ≠
(le‘ndx) |
| 47 | 45, 46, 20 | setsslnid 12730 |
. . 3
⊢ ((𝑈 ∈ V ∧ (le‘𝑌) ∈ V) → (𝐸‘𝑈) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉))) |
| 48 | 14, 42, 47 | syl2anc 411 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐸‘𝑈) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉))) |
| 49 | | eqid 2196 |
. . . 4
⊢
(le‘𝑌) =
(le‘𝑌) |
| 50 | 3, 1, 15, 49 | znval2 14194 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ 𝑌 = (𝑈 sSet 〈(le‘ndx),
(le‘𝑌)〉)) |
| 51 | 50 | fveq2d 5562 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐸‘𝑌) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉))) |
| 52 | 48, 51 | eqtr4d 2232 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝐸‘𝑈) = (𝐸‘𝑌)) |