![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znle | GIF version |
Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
znle.l | ⊢ ≤ = (le‘𝑌) |
Ref | Expression |
---|---|
znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
6 | eqid 2193 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | znval 14124 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
8 | 7 | fveq2d 5558 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
9 | znle.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
10 | 9 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = (le‘𝑌)) |
11 | zringring 14081 | . . . . 5 ⊢ ℤring ∈ Ring | |
12 | rspex 13970 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
14 | 1, 13 | eqeltri 2266 | . . . . . . 7 ⊢ 𝑆 ∈ V |
15 | snexg 4213 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
16 | fvexg 5573 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
17 | 14, 15, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V) |
18 | eqgex 13291 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
19 | 11, 17, 18 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
20 | qusex 12908 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) | |
21 | 11, 19, 20 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
22 | 2, 21 | eqeltrid 2280 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑈 ∈ V) |
23 | eqid 2193 | . . . . . . . 8 ⊢ (ℤRHom‘𝑈) = (ℤRHom‘𝑈) | |
24 | 23 | zrhex 14109 | . . . . . . 7 ⊢ (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V) |
25 | resexg 4982 | . . . . . . 7 ⊢ ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) | |
26 | 22, 24, 25 | 3syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
27 | 4, 26 | eqeltrid 2280 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝐹 ∈ V) |
28 | xrex 9922 | . . . . . . 7 ⊢ ℝ* ∈ V | |
29 | 28, 28 | xpex 4774 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
30 | lerelxr 8082 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
31 | 29, 30 | ssexi 4167 | . . . . 5 ⊢ ≤ ∈ V |
32 | coexg 5210 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V) | |
33 | 27, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V) |
34 | cnvexg 5203 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
35 | 27, 34 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡𝐹 ∈ V) |
36 | coexg 5210 | . . . 4 ⊢ (((𝐹 ∘ ≤ ) ∈ V ∧ ◡𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) | |
37 | 33, 35, 36 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) |
38 | pleslid 12819 | . . . 4 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | |
39 | 38 | setsslid 12669 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
40 | 22, 37, 39 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
41 | 8, 10, 40 | 3eqtr4d 2236 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ifcif 3557 {csn 3618 〈cop 3621 × cxp 4657 ◡ccnv 4658 ↾ cres 4661 ∘ ccom 4663 ‘cfv 5254 (class class class)co 5918 0cc0 7872 ℝ*cxr 8053 ≤ cle 8055 ℕ0cn0 9240 ℤcz 9317 ..^cfzo 10208 ndxcnx 12615 sSet csts 12616 lecple 12702 /s cqus 12883 ~QG cqg 13239 Ringcrg 13492 RSpancrsp 13964 ℤringczring 14078 ℤRHomczrh 14099 ℤ/nℤczn 14101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-ec 6589 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-fz 10075 df-cj 10986 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-starv 12710 df-sca 12711 df-vsca 12712 df-ip 12713 df-ple 12715 df-0g 12869 df-iimas 12885 df-qus 12886 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-subg 13240 df-eqg 13242 df-cmn 13356 df-mgp 13417 df-ur 13456 df-ring 13494 df-cring 13495 df-rhm 13648 df-subrg 13715 df-lsp 13883 df-sra 13931 df-rgmod 13932 df-rsp 13966 df-icnfld 14048 df-zring 14079 df-zrh 14102 df-zn 14104 |
This theorem is referenced by: znval2 14126 znle2 14140 |
Copyright terms: Public domain | W3C validator |