| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znle | GIF version | ||
| Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
| znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| znle.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
| 3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
| 5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | eqid 2196 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | znval 14192 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
| 8 | 7 | fveq2d 5562 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 9 | znle.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = (le‘𝑌)) |
| 11 | zringring 14149 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 12 | rspex 14030 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
| 14 | 1, 13 | eqeltri 2269 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 15 | snexg 4217 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
| 16 | fvexg 5577 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
| 17 | 14, 15, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V) |
| 18 | eqgex 13351 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
| 19 | 11, 17, 18 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 20 | qusex 12968 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) | |
| 21 | 11, 19, 20 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
| 22 | 2, 21 | eqeltrid 2283 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑈 ∈ V) |
| 23 | eqid 2196 | . . . . . . . 8 ⊢ (ℤRHom‘𝑈) = (ℤRHom‘𝑈) | |
| 24 | 23 | zrhex 14177 | . . . . . . 7 ⊢ (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V) |
| 25 | resexg 4986 | . . . . . . 7 ⊢ ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) | |
| 26 | 22, 24, 25 | 3syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
| 27 | 4, 26 | eqeltrid 2283 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝐹 ∈ V) |
| 28 | xrex 9931 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 29 | 28, 28 | xpex 4778 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
| 30 | lerelxr 8089 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 31 | 29, 30 | ssexi 4171 | . . . . 5 ⊢ ≤ ∈ V |
| 32 | coexg 5214 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V) | |
| 33 | 27, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V) |
| 34 | cnvexg 5207 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 35 | 27, 34 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡𝐹 ∈ V) |
| 36 | coexg 5214 | . . . 4 ⊢ (((𝐹 ∘ ≤ ) ∈ V ∧ ◡𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) | |
| 37 | 33, 35, 36 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) |
| 38 | pleslid 12879 | . . . 4 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | |
| 39 | 38 | setsslid 12729 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 40 | 22, 37, 39 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 41 | 8, 10, 40 | 3eqtr4d 2239 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ifcif 3561 {csn 3622 〈cop 3625 × cxp 4661 ◡ccnv 4662 ↾ cres 4665 ∘ ccom 4667 ‘cfv 5258 (class class class)co 5922 0cc0 7879 ℝ*cxr 8060 ≤ cle 8062 ℕ0cn0 9249 ℤcz 9326 ..^cfzo 10217 ndxcnx 12675 sSet csts 12676 lecple 12762 /s cqus 12943 ~QG cqg 13299 Ringcrg 13552 RSpancrsp 14024 ℤringczring 14146 ℤRHomczrh 14167 ℤ/nℤczn 14169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-ec 6594 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-sca 12771 df-vsca 12772 df-ip 12773 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-iimas 12945 df-qus 12946 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-eqg 13302 df-cmn 13416 df-mgp 13477 df-ur 13516 df-ring 13554 df-cring 13555 df-rhm 13708 df-subrg 13775 df-lsp 13943 df-sra 13991 df-rgmod 13992 df-rsp 14026 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 df-zrh 14170 df-zn 14172 |
| This theorem is referenced by: znval2 14194 znle2 14208 |
| Copyright terms: Public domain | W3C validator |