ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znle GIF version

Theorem znle 14399
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle.l = (le‘𝑌)
Assertion
Ref Expression
znle (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle
StepHypRef Expression
1 znval.s . . . 4 𝑆 = (RSpan‘ℤring)
2 znval.u . . . 4 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
3 znval.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
4 znval.f . . . 4 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
5 znval.w . . . 4 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 eqid 2205 . . . 4 ((𝐹 ∘ ≤ ) ∘ 𝐹) = ((𝐹 ∘ ≤ ) ∘ 𝐹)
71, 2, 3, 4, 5, 6znval 14398 . . 3 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
87fveq2d 5580 . 2 (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
9 znle.l . . 3 = (le‘𝑌)
109a1i 9 . 2 (𝑁 ∈ ℕ0 = (le‘𝑌))
11 zringring 14355 . . . . 5 ring ∈ Ring
12 rspex 14236 . . . . . . . . 9 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
1311, 12ax-mp 5 . . . . . . . 8 (RSpan‘ℤring) ∈ V
141, 13eqeltri 2278 . . . . . . 7 𝑆 ∈ V
15 snexg 4228 . . . . . . 7 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
16 fvexg 5595 . . . . . . 7 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
1714, 15, 16sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
18 eqgex 13557 . . . . . 6 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
1911, 17, 18sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
20 qusex 13157 . . . . 5 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
2111, 19, 20sylancr 414 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
222, 21eqeltrid 2292 . . 3 (𝑁 ∈ ℕ0𝑈 ∈ V)
23 eqid 2205 . . . . . . . 8 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
2423zrhex 14383 . . . . . . 7 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
25 resexg 4999 . . . . . . 7 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
2622, 24, 253syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
274, 26eqeltrid 2292 . . . . 5 (𝑁 ∈ ℕ0𝐹 ∈ V)
28 xrex 9978 . . . . . . 7 * ∈ V
2928, 28xpex 4790 . . . . . 6 (ℝ* × ℝ*) ∈ V
30 lerelxr 8135 . . . . . 6 ≤ ⊆ (ℝ* × ℝ*)
3129, 30ssexi 4182 . . . . 5 ≤ ∈ V
32 coexg 5227 . . . . 5 ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V)
3327, 31, 32sylancl 413 . . . 4 (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V)
34 cnvexg 5220 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ V)
3527, 34syl 14 . . . 4 (𝑁 ∈ ℕ0𝐹 ∈ V)
36 coexg 5227 . . . 4 (((𝐹 ∘ ≤ ) ∈ V ∧ 𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
3733, 35, 36syl2anc 411 . . 3 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
38 pleslid 13034 . . . 4 (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
3938setsslid 12883 . . 3 ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
4022, 37, 39syl2anc 411 . 2 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
418, 10, 403eqtr4d 2248 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  Vcvv 2772  ifcif 3571  {csn 3633  cop 3636   × cxp 4673  ccnv 4674  cres 4677  ccom 4679  cfv 5271  (class class class)co 5944  0cc0 7925  *cxr 8106  cle 8108  0cn0 9295  cz 9372  ..^cfzo 10264  ndxcnx 12829   sSet csts 12830  lecple 12916   /s cqus 13132   ~QG cqg 13505  Ringcrg 13758  RSpancrsp 14230  ringczring 14352  ℤRHomczrh 14373  ℤ/nczn 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-ec 6622  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-rp 9776  df-fz 10131  df-cj 11153  df-abs 11310  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-starv 12924  df-sca 12925  df-vsca 12926  df-ip 12927  df-tset 12928  df-ple 12929  df-ds 12931  df-unif 12932  df-0g 13090  df-topgen 13092  df-iimas 13134  df-qus 13135  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-eqg 13508  df-cmn 13622  df-mgp 13683  df-ur 13722  df-ring 13760  df-cring 13761  df-rhm 13914  df-subrg 13981  df-lsp 14149  df-sra 14197  df-rgmod 14198  df-rsp 14232  df-bl 14308  df-mopn 14309  df-fg 14311  df-metu 14312  df-cnfld 14319  df-zring 14353  df-zrh 14376  df-zn 14378
This theorem is referenced by:  znval2  14400  znle2  14414
  Copyright terms: Public domain W3C validator