ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znle GIF version

Theorem znle 14136
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle.l = (le‘𝑌)
Assertion
Ref Expression
znle (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle
StepHypRef Expression
1 znval.s . . . 4 𝑆 = (RSpan‘ℤring)
2 znval.u . . . 4 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
3 znval.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
4 znval.f . . . 4 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
5 znval.w . . . 4 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 eqid 2193 . . . 4 ((𝐹 ∘ ≤ ) ∘ 𝐹) = ((𝐹 ∘ ≤ ) ∘ 𝐹)
71, 2, 3, 4, 5, 6znval 14135 . . 3 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
87fveq2d 5559 . 2 (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
9 znle.l . . 3 = (le‘𝑌)
109a1i 9 . 2 (𝑁 ∈ ℕ0 = (le‘𝑌))
11 zringring 14092 . . . . 5 ring ∈ Ring
12 rspex 13973 . . . . . . . . 9 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
1311, 12ax-mp 5 . . . . . . . 8 (RSpan‘ℤring) ∈ V
141, 13eqeltri 2266 . . . . . . 7 𝑆 ∈ V
15 snexg 4214 . . . . . . 7 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
16 fvexg 5574 . . . . . . 7 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
1714, 15, 16sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
18 eqgex 13294 . . . . . 6 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
1911, 17, 18sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
20 qusex 12911 . . . . 5 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
2111, 19, 20sylancr 414 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
222, 21eqeltrid 2280 . . 3 (𝑁 ∈ ℕ0𝑈 ∈ V)
23 eqid 2193 . . . . . . . 8 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
2423zrhex 14120 . . . . . . 7 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
25 resexg 4983 . . . . . . 7 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
2622, 24, 253syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
274, 26eqeltrid 2280 . . . . 5 (𝑁 ∈ ℕ0𝐹 ∈ V)
28 xrex 9925 . . . . . . 7 * ∈ V
2928, 28xpex 4775 . . . . . 6 (ℝ* × ℝ*) ∈ V
30 lerelxr 8084 . . . . . 6 ≤ ⊆ (ℝ* × ℝ*)
3129, 30ssexi 4168 . . . . 5 ≤ ∈ V
32 coexg 5211 . . . . 5 ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V)
3327, 31, 32sylancl 413 . . . 4 (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V)
34 cnvexg 5204 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ V)
3527, 34syl 14 . . . 4 (𝑁 ∈ ℕ0𝐹 ∈ V)
36 coexg 5211 . . . 4 (((𝐹 ∘ ≤ ) ∈ V ∧ 𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
3733, 35, 36syl2anc 411 . . 3 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
38 pleslid 12822 . . . 4 (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ)
3938setsslid 12672 . . 3 ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
4022, 37, 39syl2anc 411 . 2 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
418, 10, 403eqtr4d 2236 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  ifcif 3558  {csn 3619  cop 3622   × cxp 4658  ccnv 4659  cres 4662  ccom 4664  cfv 5255  (class class class)co 5919  0cc0 7874  *cxr 8055  cle 8057  0cn0 9243  cz 9320  ..^cfzo 10211  ndxcnx 12618   sSet csts 12619  lecple 12705   /s cqus 12886   ~QG cqg 13242  Ringcrg 13495  RSpancrsp 13967  ringczring 14089  ℤRHomczrh 14110  ℤ/nczn 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-ec 6591  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-cj 10989  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-sca 12714  df-vsca 12715  df-ip 12716  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-eqg 13245  df-cmn 13359  df-mgp 13420  df-ur 13459  df-ring 13497  df-cring 13498  df-rhm 13651  df-subrg 13718  df-lsp 13886  df-sra 13934  df-rgmod 13935  df-rsp 13969  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-zring 14090  df-zrh 14113  df-zn 14115
This theorem is referenced by:  znval2  14137  znle2  14151
  Copyright terms: Public domain W3C validator