| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znle | GIF version | ||
| Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
| znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| znle.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
| 3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
| 5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | eqid 2196 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | znval 14268 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
| 8 | 7 | fveq2d 5565 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 9 | znle.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = (le‘𝑌)) |
| 11 | zringring 14225 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 12 | rspex 14106 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
| 14 | 1, 13 | eqeltri 2269 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 15 | snexg 4218 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
| 16 | fvexg 5580 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
| 17 | 14, 15, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V) |
| 18 | eqgex 13427 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
| 19 | 11, 17, 18 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 20 | qusex 13027 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) | |
| 21 | 11, 19, 20 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
| 22 | 2, 21 | eqeltrid 2283 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑈 ∈ V) |
| 23 | eqid 2196 | . . . . . . . 8 ⊢ (ℤRHom‘𝑈) = (ℤRHom‘𝑈) | |
| 24 | 23 | zrhex 14253 | . . . . . . 7 ⊢ (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V) |
| 25 | resexg 4987 | . . . . . . 7 ⊢ ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) | |
| 26 | 22, 24, 25 | 3syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
| 27 | 4, 26 | eqeltrid 2283 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝐹 ∈ V) |
| 28 | xrex 9948 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 29 | 28, 28 | xpex 4779 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
| 30 | lerelxr 8106 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 31 | 29, 30 | ssexi 4172 | . . . . 5 ⊢ ≤ ∈ V |
| 32 | coexg 5215 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V) | |
| 33 | 27, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V) |
| 34 | cnvexg 5208 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 35 | 27, 34 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡𝐹 ∈ V) |
| 36 | coexg 5215 | . . . 4 ⊢ (((𝐹 ∘ ≤ ) ∈ V ∧ ◡𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) | |
| 37 | 33, 35, 36 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) |
| 38 | pleslid 12904 | . . . 4 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | |
| 39 | 38 | setsslid 12754 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 40 | 22, 37, 39 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 41 | 8, 10, 40 | 3eqtr4d 2239 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ifcif 3562 {csn 3623 〈cop 3626 × cxp 4662 ◡ccnv 4663 ↾ cres 4666 ∘ ccom 4668 ‘cfv 5259 (class class class)co 5925 0cc0 7896 ℝ*cxr 8077 ≤ cle 8079 ℕ0cn0 9266 ℤcz 9343 ..^cfzo 10234 ndxcnx 12700 sSet csts 12701 lecple 12787 /s cqus 13002 ~QG cqg 13375 Ringcrg 13628 RSpancrsp 14100 ℤringczring 14222 ℤRHomczrh 14243 ℤ/nℤczn 14245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-ec 6603 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-rp 9746 df-fz 10101 df-cj 11024 df-abs 11181 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-starv 12795 df-sca 12796 df-vsca 12797 df-ip 12798 df-tset 12799 df-ple 12800 df-ds 12802 df-unif 12803 df-0g 12960 df-topgen 12962 df-iimas 13004 df-qus 13005 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-subg 13376 df-eqg 13378 df-cmn 13492 df-mgp 13553 df-ur 13592 df-ring 13630 df-cring 13631 df-rhm 13784 df-subrg 13851 df-lsp 14019 df-sra 14067 df-rgmod 14068 df-rsp 14102 df-bl 14178 df-mopn 14179 df-fg 14181 df-metu 14182 df-cnfld 14189 df-zring 14223 df-zrh 14246 df-zn 14248 |
| This theorem is referenced by: znval2 14270 znle2 14284 |
| Copyright terms: Public domain | W3C validator |