![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > znle | GIF version |
Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
znle.l | ⊢ ≤ = (le‘𝑌) |
Ref | Expression |
---|---|
znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
6 | eqid 2189 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | znval 13949 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
8 | 7 | fveq2d 5538 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
9 | znle.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
10 | 9 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = (le‘𝑌)) |
11 | zringring 13909 | . . . . 5 ⊢ ℤring ∈ Ring | |
12 | rspex 13807 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
14 | 1, 13 | eqeltri 2262 | . . . . . . 7 ⊢ 𝑆 ∈ V |
15 | snexg 4202 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
16 | fvexg 5553 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
17 | 14, 15, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V) |
18 | eqgex 13177 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
19 | 11, 17, 18 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
20 | qusex 12805 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) | |
21 | 11, 19, 20 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
22 | 2, 21 | eqeltrid 2276 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑈 ∈ V) |
23 | eqid 2189 | . . . . . . . 8 ⊢ (ℤRHom‘𝑈) = (ℤRHom‘𝑈) | |
24 | 23 | zrhex 13935 | . . . . . . 7 ⊢ (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V) |
25 | resexg 4965 | . . . . . . 7 ⊢ ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) | |
26 | 22, 24, 25 | 3syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
27 | 4, 26 | eqeltrid 2276 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝐹 ∈ V) |
28 | xrex 9888 | . . . . . . 7 ⊢ ℝ* ∈ V | |
29 | 28, 28 | xpex 4759 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
30 | lerelxr 8051 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
31 | 29, 30 | ssexi 4156 | . . . . 5 ⊢ ≤ ∈ V |
32 | coexg 5191 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V) | |
33 | 27, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V) |
34 | cnvexg 5184 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
35 | 27, 34 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡𝐹 ∈ V) |
36 | coexg 5191 | . . . 4 ⊢ (((𝐹 ∘ ≤ ) ∈ V ∧ ◡𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) | |
37 | 33, 35, 36 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) |
38 | pleslid 12716 | . . . 4 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | |
39 | 38 | setsslid 12566 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
40 | 22, 37, 39 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
41 | 8, 10, 40 | 3eqtr4d 2232 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ifcif 3549 {csn 3607 〈cop 3610 × cxp 4642 ◡ccnv 4643 ↾ cres 4646 ∘ ccom 4648 ‘cfv 5235 (class class class)co 5897 0cc0 7842 ℝ*cxr 8022 ≤ cle 8024 ℕ0cn0 9207 ℤcz 9284 ..^cfzo 10174 ndxcnx 12512 sSet csts 12513 lecple 12599 /s cqus 12780 ~QG cqg 13125 Ringcrg 13367 RSpancrsp 13801 ℤringczring 13906 ℤRHomczrh 13926 ℤ/nℤczn 13928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-addf 7964 ax-mulf 7965 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-ec 6562 df-map 6677 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-9 9016 df-n0 9208 df-z 9285 df-dec 9416 df-uz 9560 df-fz 10041 df-cj 10886 df-struct 12517 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-plusg 12605 df-mulr 12606 df-starv 12607 df-sca 12608 df-vsca 12609 df-ip 12610 df-ple 12612 df-0g 12766 df-iimas 12782 df-qus 12783 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-subg 13126 df-eqg 13128 df-cmn 13242 df-mgp 13292 df-ur 13331 df-ring 13369 df-cring 13370 df-rhm 13519 df-subrg 13583 df-lsp 13720 df-sra 13768 df-rgmod 13769 df-rsp 13803 df-icnfld 13882 df-zring 13907 df-zrh 13929 df-zn 13931 |
This theorem is referenced by: znval2 13951 |
Copyright terms: Public domain | W3C validator |