| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znle | GIF version | ||
| Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
| znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
| znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
| znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| znle.l | ⊢ ≤ = (le‘𝑌) |
| Ref | Expression |
|---|---|
| znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
| 3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
| 5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
| 6 | eqid 2207 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | znval 14513 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
| 8 | 7 | fveq2d 5603 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 9 | znle.l | . . 3 ⊢ ≤ = (le‘𝑌) | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → ≤ = (le‘𝑌)) |
| 11 | zringring 14470 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 12 | rspex 14351 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . . 8 ⊢ (RSpan‘ℤring) ∈ V |
| 14 | 1, 13 | eqeltri 2280 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 15 | snexg 4244 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → {𝑁} ∈ V) | |
| 16 | fvexg 5618 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) | |
| 17 | 14, 15, 16 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V) |
| 18 | eqgex 13672 | . . . . . 6 ⊢ ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) | |
| 19 | 11, 17, 18 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 20 | qusex 13272 | . . . . 5 ⊢ ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) | |
| 21 | 11, 19, 20 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
| 22 | 2, 21 | eqeltrid 2294 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑈 ∈ V) |
| 23 | eqid 2207 | . . . . . . . 8 ⊢ (ℤRHom‘𝑈) = (ℤRHom‘𝑈) | |
| 24 | 23 | zrhex 14498 | . . . . . . 7 ⊢ (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V) |
| 25 | resexg 5018 | . . . . . . 7 ⊢ ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) | |
| 26 | 22, 24, 25 | 3syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
| 27 | 4, 26 | eqeltrid 2294 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝐹 ∈ V) |
| 28 | xrex 10013 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 29 | 28, 28 | xpex 4808 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
| 30 | lerelxr 8170 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 31 | 29, 30 | ssexi 4198 | . . . . 5 ⊢ ≤ ∈ V |
| 32 | coexg 5246 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V) | |
| 33 | 27, 31, 32 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V) |
| 34 | cnvexg 5239 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 35 | 27, 34 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ◡𝐹 ∈ V) |
| 36 | coexg 5246 | . . . 4 ⊢ (((𝐹 ∘ ≤ ) ∈ V ∧ ◡𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) | |
| 37 | 33, 35, 36 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) |
| 38 | pleslid 13149 | . . . 4 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | |
| 39 | 38 | setsslid 12998 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 40 | 22, 37, 39 | syl2anc 411 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
| 41 | 8, 10, 40 | 3eqtr4d 2250 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ifcif 3579 {csn 3643 〈cop 3646 × cxp 4691 ◡ccnv 4692 ↾ cres 4695 ∘ ccom 4697 ‘cfv 5290 (class class class)co 5967 0cc0 7960 ℝ*cxr 8141 ≤ cle 8143 ℕ0cn0 9330 ℤcz 9407 ..^cfzo 10299 ndxcnx 12944 sSet csts 12945 lecple 13031 /s cqus 13247 ~QG cqg 13620 Ringcrg 13873 RSpancrsp 14345 ℤringczring 14467 ℤRHomczrh 14488 ℤ/nℤczn 14490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-ec 6645 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-dec 9540 df-uz 9684 df-rp 9811 df-fz 10166 df-cj 11268 df-abs 11425 df-struct 12949 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-starv 13039 df-sca 13040 df-vsca 13041 df-ip 13042 df-tset 13043 df-ple 13044 df-ds 13046 df-unif 13047 df-0g 13205 df-topgen 13207 df-iimas 13249 df-qus 13250 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 df-eqg 13623 df-cmn 13737 df-mgp 13798 df-ur 13837 df-ring 13875 df-cring 13876 df-rhm 14029 df-subrg 14096 df-lsp 14264 df-sra 14312 df-rgmod 14313 df-rsp 14347 df-bl 14423 df-mopn 14424 df-fg 14426 df-metu 14427 df-cnfld 14434 df-zring 14468 df-zrh 14491 df-zn 14493 |
| This theorem is referenced by: znval2 14515 znle2 14529 |
| Copyright terms: Public domain | W3C validator |