Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rge0ssre | GIF version |
Description: Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.) |
Ref | Expression |
---|---|
rge0ssre | ⊢ (0[,)+∞) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrege0 9926 | . . 3 ⊢ (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) | |
2 | 1 | simplbi 272 | . 2 ⊢ (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ) |
3 | 2 | ssriv 3151 | 1 ⊢ (0[,)+∞) ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3987 (class class class)co 5851 ℝcr 7766 0cc0 7767 +∞cpnf 7944 ≤ cle 7948 [,)cico 9840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1re 7861 ax-addrcl 7864 ax-rnegex 7876 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-ico 9844 |
This theorem is referenced by: fsumge0 11415 fprodge0 11593 |
Copyright terms: Public domain | W3C validator |