![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rege0subm | GIF version |
Description: The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
rege0subm | ⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 10002 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 1 | sseli 3166 | . . 3 ⊢ (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℝ) |
3 | 2 | recnd 8011 | . 2 ⊢ (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ) |
4 | ge0addcl 10006 | . 2 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞)) | |
5 | 0e0icopnf 10004 | . 2 ⊢ 0 ∈ (0[,)+∞) | |
6 | 3, 4, 5 | cnsubmlem 13874 | 1 ⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 ‘cfv 5232 (class class class)co 5892 ℝcr 7835 0cc0 7836 +∞cpnf 8014 [,)cico 9915 SubMndcsubmnd 12903 ℂfldccnfld 13857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-mulrcl 7935 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-0lt1 7942 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-precex 7946 ax-cnre 7947 ax-pre-ltirr 7948 ax-pre-ltwlin 7949 ax-pre-lttrn 7950 ax-pre-apti 7951 ax-pre-ltadd 7952 ax-pre-mulgt0 7953 ax-addf 7958 ax-mulf 7959 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-po 4311 df-iso 4312 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 df-sub 8155 df-neg 8156 df-reap 8557 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-7 9008 df-8 9009 df-9 9010 df-n0 9202 df-z 9279 df-dec 9410 df-uz 9554 df-ico 9919 df-fz 10034 df-cj 10878 df-struct 12509 df-ndx 12510 df-slot 12511 df-base 12513 df-sets 12514 df-plusg 12595 df-mulr 12596 df-starv 12597 df-0g 12756 df-mgm 12825 df-sgrp 12858 df-mnd 12871 df-submnd 12905 df-grp 12941 df-cmn 13218 df-mgp 13268 df-ring 13345 df-cring 13346 df-icnfld 13858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |