| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngmgpf | GIF version | ||
| Description: Restricted functionality of the multiplicative group on non-unital rings (mgpf 13823 analog). (Contributed by AV, 22-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngmgpf | ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 13734 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3217 | . . 3 ⊢ Rng ⊆ V | |
| 3 | fnssres 5395 | . . 3 ⊢ ((mulGrp Fn V ∧ Rng ⊆ V) → (mulGrp ↾ Rng) Fn Rng) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (mulGrp ↾ Rng) Fn Rng |
| 5 | fvres 5610 | . . . 4 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2206 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | rngmgp 13748 | . . . 4 ⊢ (𝑎 ∈ Rng → (mulGrp‘𝑎) ∈ Smgrp) |
| 8 | 5, 7 | eqeltrd 2283 | . . 3 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp) |
| 9 | 8 | rgen 2560 | . 2 ⊢ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp |
| 10 | ffnfv 5748 | . 2 ⊢ ((mulGrp ↾ Rng):Rng⟶Smgrp ↔ ((mulGrp ↾ Rng) Fn Rng ∧ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp)) | |
| 11 | 4, 9, 10 | mpbir2an 945 | 1 ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3168 ↾ cres 4682 Fn wfn 5272 ⟶wf 5273 ‘cfv 5277 Smgrpcsgrp 13283 mulGrpcmgp 13732 Rngcrng 13744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-mgp 13733 df-rng 13745 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |