![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rngmgpf | GIF version |
Description: Restricted functionality of the multiplicative group on non-unital rings (mgpf 13510 analog). (Contributed by AV, 22-Feb-2025.) |
Ref | Expression |
---|---|
rngmgpf | ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 13421 | . . 3 ⊢ mulGrp Fn V | |
2 | ssv 3202 | . . 3 ⊢ Rng ⊆ V | |
3 | fnssres 5368 | . . 3 ⊢ ((mulGrp Fn V ∧ Rng ⊆ V) → (mulGrp ↾ Rng) Fn Rng) | |
4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (mulGrp ↾ Rng) Fn Rng |
5 | fvres 5579 | . . . 4 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) = (mulGrp‘𝑎)) | |
6 | eqid 2193 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
7 | 6 | rngmgp 13435 | . . . 4 ⊢ (𝑎 ∈ Rng → (mulGrp‘𝑎) ∈ Smgrp) |
8 | 5, 7 | eqeltrd 2270 | . . 3 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp) |
9 | 8 | rgen 2547 | . 2 ⊢ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp |
10 | ffnfv 5717 | . 2 ⊢ ((mulGrp ↾ Rng):Rng⟶Smgrp ↔ ((mulGrp ↾ Rng) Fn Rng ∧ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp)) | |
11 | 4, 9, 10 | mpbir2an 944 | 1 ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ⊆ wss 3154 ↾ cres 4662 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 Smgrpcsgrp 12987 mulGrpcmgp 13419 Rngcrng 13431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-mgp 13420 df-rng 13432 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |