| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rngmgpf | GIF version | ||
| Description: Restricted functionality of the multiplicative group on non-unital rings (mgpf 13567 analog). (Contributed by AV, 22-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| rngmgpf | ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnmgp 13478 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3205 | . . 3 ⊢ Rng ⊆ V | |
| 3 | fnssres 5371 | . . 3 ⊢ ((mulGrp Fn V ∧ Rng ⊆ V) → (mulGrp ↾ Rng) Fn Rng) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (mulGrp ↾ Rng) Fn Rng | 
| 5 | fvres 5582 | . . . 4 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2196 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | rngmgp 13492 | . . . 4 ⊢ (𝑎 ∈ Rng → (mulGrp‘𝑎) ∈ Smgrp) | 
| 8 | 5, 7 | eqeltrd 2273 | . . 3 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp) | 
| 9 | 8 | rgen 2550 | . 2 ⊢ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp | 
| 10 | ffnfv 5720 | . 2 ⊢ ((mulGrp ↾ Rng):Rng⟶Smgrp ↔ ((mulGrp ↾ Rng) Fn Rng ∧ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp)) | |
| 11 | 4, 9, 10 | mpbir2an 944 | 1 ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ⊆ wss 3157 ↾ cres 4665 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 Smgrpcsgrp 13044 mulGrpcmgp 13476 Rngcrng 13488 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-mgp 13477 df-rng 13489 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |