ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngmgpf GIF version

Theorem rngmgpf 13436
Description: Restricted functionality of the multiplicative group on non-unital rings (mgpf 13510 analog). (Contributed by AV, 22-Feb-2025.)
Assertion
Ref Expression
rngmgpf (mulGrp ↾ Rng):Rng⟶Smgrp

Proof of Theorem rngmgpf
StepHypRef Expression
1 fnmgp 13421 . . 3 mulGrp Fn V
2 ssv 3202 . . 3 Rng ⊆ V
3 fnssres 5368 . . 3 ((mulGrp Fn V ∧ Rng ⊆ V) → (mulGrp ↾ Rng) Fn Rng)
41, 2, 3mp2an 426 . 2 (mulGrp ↾ Rng) Fn Rng
5 fvres 5579 . . . 4 (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) = (mulGrp‘𝑎))
6 eqid 2193 . . . . 5 (mulGrp‘𝑎) = (mulGrp‘𝑎)
76rngmgp 13435 . . . 4 (𝑎 ∈ Rng → (mulGrp‘𝑎) ∈ Smgrp)
85, 7eqeltrd 2270 . . 3 (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp)
98rgen 2547 . 2 𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp
10 ffnfv 5717 . 2 ((mulGrp ↾ Rng):Rng⟶Smgrp ↔ ((mulGrp ↾ Rng) Fn Rng ∧ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp))
114, 9, 10mpbir2an 944 1 (mulGrp ↾ Rng):Rng⟶Smgrp
Colors of variables: wff set class
Syntax hints:  wcel 2164  wral 2472  Vcvv 2760  wss 3154  cres 4662   Fn wfn 5250  wf 5251  cfv 5255  Smgrpcsgrp 12987  mulGrpcmgp 13419  Rngcrng 13431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-mgp 13420  df-rng 13432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator