| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmettpos | GIF version | ||
| Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmettpos | ⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetsym 15036 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) | |
| 2 | 1 | 3expb 1228 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
| 3 | 2 | ralrimivva 2612 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
| 4 | xmetf 15018 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 5 | ffn 5472 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 6 | tpossym 6420 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (tpos 𝐷 = 𝐷 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥))) | |
| 7 | 4, 5, 6 | 3syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (tpos 𝐷 = 𝐷 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) = (𝑦𝐷𝑥))) |
| 8 | 3, 7 | mpbird 167 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 × cxp 4716 Fn wfn 5312 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 tpos ctpos 6388 ℝ*cxr 8176 ∞Metcxmet 14494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-apti 8110 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-tpos 6389 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-xadd 9965 df-xmet 14502 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |