ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettpos GIF version

Theorem xmettpos 13909
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettpos (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ tpos 𝐷 = 𝐷)

Proof of Theorem xmettpos
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetsym 13907 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (π‘₯𝐷𝑦) = (𝑦𝐷π‘₯))
213expb 1204 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) = (𝑦𝐷π‘₯))
32ralrimivva 2559 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) = (𝑦𝐷π‘₯))
4 xmetf 13889 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
5 ffn 5367 . . 3 (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* β†’ 𝐷 Fn (𝑋 Γ— 𝑋))
6 tpossym 6279 . . 3 (𝐷 Fn (𝑋 Γ— 𝑋) β†’ (tpos 𝐷 = 𝐷 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) = (𝑦𝐷π‘₯)))
74, 5, 63syl 17 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (tpos 𝐷 = 𝐷 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐷𝑦) = (𝑦𝐷π‘₯)))
83, 7mpbird 167 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ tpos 𝐷 = 𝐷)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   Γ— cxp 4626   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877  tpos ctpos 6247  β„*cxr 7993  βˆžMetcxmet 13479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-apti 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-tpos 6248  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-xadd 9775  df-xmet 13487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator