Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0fin | Structured version Visualization version GIF version |
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) |
Ref | Expression |
---|---|
0fin | ⊢ ∅ ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7710 | . 2 ⊢ ∅ ∈ ω | |
2 | ssid 3939 | . 2 ⊢ ∅ ⊆ ∅ | |
3 | ssnnfi 8914 | . 2 ⊢ ((∅ ∈ ω ∧ ∅ ⊆ ∅) → ∅ ∈ Fin) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ∅ ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ωcom 7687 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-om 7688 df-en 8692 df-fin 8695 |
This theorem is referenced by: ssfi 8918 imafi 8920 cnvfi 8924 fnfi 8925 nfielex 8976 xpfi 9015 iunfi 9037 fczfsuppd 9076 fsuppun 9077 0fsupp 9080 r1fin 9462 acndom 9738 numwdom 9746 ackbij1lem18 9924 sdom2en01 9989 fin23lem26 10012 isfin1-3 10073 gchxpidm 10356 fzfi 13620 fzofi 13622 hasheq0 14006 hashxp 14077 lcmf0 16267 0hashbc 16636 acsfn0 17286 isdrs2 17939 fpwipodrs 18173 symgfisg 18991 dsmm0cl 20857 mplsubg 21118 mpllss 21119 psrbag0 21180 mat0dimbas0 21523 mat0dim0 21524 mat0dimid 21525 mat0dimscm 21526 mat0dimcrng 21527 mat0scmat 21595 mavmul0 21609 mavmul0g 21610 mdet0pr 21649 m1detdiag 21654 d0mat2pmat 21795 chpmat0d 21891 fctop 22062 cmpfi 22467 bwth 22469 comppfsc 22591 ptbasid 22634 cfinfil 22952 ufinffr 22988 fin1aufil 22991 alexsubALTlem2 23107 alexsubALTlem4 23109 ptcmplem2 23112 tsmsfbas 23187 xrge0gsumle 23902 xrge0tsms 23903 fta1 25373 uhgr0edgfi 27510 fusgrfisbase 27598 vtxdg0e 27744 wwlksnfi 28172 hashxpe 31029 xrge0tsmsd 31219 esumnul 31916 esum0 31917 esumcst 31931 esumsnf 31932 esumpcvgval 31946 sibf0 32201 eulerpartlemt 32238 derang0 33031 topdifinffinlem 35445 matunitlindf 35702 0totbnd 35858 heiborlem6 35901 mzpcompact2lem 40489 rp-isfinite6 41023 0pwfi 42496 fouriercn 43663 rrxtopn0 43724 salexct 43763 sge0rnn0 43796 sge00 43804 sge0sn 43807 ovn0val 43978 ovn02 43996 hoidmv0val 44011 hoidmvle 44028 hoiqssbl 44053 von0val 44099 vonhoire 44100 vonioo 44110 vonicc 44113 vonsn 44119 lcoc0 45651 lco0 45656 |
Copyright terms: Public domain | W3C validator |