![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fin | Structured version Visualization version GIF version |
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) |
Ref | Expression |
---|---|
0fin | ⊢ ∅ ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7347 | . 2 ⊢ ∅ ∈ ω | |
2 | ssid 3849 | . 2 ⊢ ∅ ⊆ ∅ | |
3 | ssnnfi 8449 | . 2 ⊢ ((∅ ∈ ω ∧ ∅ ⊆ ∅) → ∅ ∈ Fin) | |
4 | 1, 2, 3 | mp2an 685 | 1 ⊢ ∅ ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2166 ⊆ wss 3799 ∅c0 4145 ωcom 7327 Fincfn 8223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-om 7328 df-en 8224 df-fin 8227 |
This theorem is referenced by: nfielex 8459 xpfi 8501 fnfi 8508 iunfi 8524 fczfsuppd 8563 fsuppun 8564 0fsupp 8567 r1fin 8914 acndom 9188 numwdom 9196 ackbij1lem18 9375 sdom2en01 9440 fin23lem26 9463 isfin1-3 9524 gchxpidm 9807 fzfi 13067 fzofi 13069 hasheq0 13445 hashxp 13511 lcmf0 15721 0hashbc 16083 acsfn0 16674 isdrs2 17293 fpwipodrs 17518 symgfisg 18239 mplsubg 19799 mpllss 19800 psrbag0 19855 dsmm0cl 20448 mat0dimbas0 20641 mat0dim0 20642 mat0dimid 20643 mat0dimscm 20644 mat0dimcrng 20645 mat0scmat 20713 mavmul0 20727 mavmul0g 20728 mdet0pr 20767 m1detdiag 20772 d0mat2pmat 20914 chpmat0d 21010 fctop 21180 cmpfi 21583 bwth 21585 comppfsc 21707 ptbasid 21750 cfinfil 22068 ufinffr 22104 fin1aufil 22107 alexsubALTlem2 22223 alexsubALTlem4 22225 ptcmplem2 22228 tsmsfbas 22302 xrge0gsumle 23007 xrge0tsms 23008 fta1 24463 uhgr0edgfi 26538 fusgrfisbase 26626 vtxdg0e 26773 wwlksnfi 27229 clwwlknfi 27391 xrge0tsmsd 30331 esumnul 30656 esum0 30657 esumcst 30671 esumsnf 30672 esumpcvgval 30686 sibf0 30942 eulerpartlemt 30979 derang0 31698 topdifinffinlem 33741 matunitlindf 33952 0totbnd 34115 heiborlem6 34158 mzpcompact2lem 38159 rp-isfinite6 38706 0pwfi 40045 fouriercn 41244 rrxtopn0 41305 salexct 41344 sge0rnn0 41377 sge00 41385 sge0sn 41388 ovn0val 41559 ovn02 41577 hoidmv0val 41592 hoidmvle 41609 hoiqssbl 41634 von0val 41680 vonhoire 41681 vonioo 41691 vonicc 41694 vonsn 41700 lcoc0 43059 lco0 43064 |
Copyright terms: Public domain | W3C validator |