Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0fin | Structured version Visualization version GIF version |
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.) |
Ref | Expression |
---|---|
0fin | ⊢ ∅ ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7735 | . 2 ⊢ ∅ ∈ ω | |
2 | ssid 3943 | . 2 ⊢ ∅ ⊆ ∅ | |
3 | ssnnfi 8952 | . 2 ⊢ ((∅ ∈ ω ∧ ∅ ⊆ ∅) → ∅ ∈ Fin) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ∅ ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 ωcom 7712 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-om 7713 df-en 8734 df-fin 8737 |
This theorem is referenced by: ssfi 8956 imafi 8958 cnvfi 8963 fnfi 8964 nneneq 8992 nfielex 9047 xpfi 9085 iunfi 9107 fczfsuppd 9146 fsuppun 9147 0fsupp 9150 r1fin 9531 acndom 9807 numwdom 9815 ackbij1lem18 9993 sdom2en01 10058 fin23lem26 10081 isfin1-3 10142 gchxpidm 10425 fzfi 13692 fzofi 13694 hasheq0 14078 hashxp 14149 lcmf0 16339 0hashbc 16708 acsfn0 17369 isdrs2 18024 fpwipodrs 18258 symgfisg 19076 dsmm0cl 20947 mplsubg 21208 mpllss 21209 psrbag0 21270 mat0dimbas0 21615 mat0dim0 21616 mat0dimid 21617 mat0dimscm 21618 mat0dimcrng 21619 mat0scmat 21687 mavmul0 21701 mavmul0g 21702 mdet0pr 21741 m1detdiag 21746 d0mat2pmat 21887 chpmat0d 21983 fctop 22154 cmpfi 22559 bwth 22561 comppfsc 22683 ptbasid 22726 cfinfil 23044 ufinffr 23080 fin1aufil 23083 alexsubALTlem2 23199 alexsubALTlem4 23201 ptcmplem2 23204 tsmsfbas 23279 xrge0gsumle 23996 xrge0tsms 23997 fta1 25468 uhgr0edgfi 27607 fusgrfisbase 27695 vtxdg0e 27841 wwlksnfi 28271 hashxpe 31127 xrge0tsmsd 31317 esumnul 32016 esum0 32017 esumcst 32031 esumsnf 32032 esumpcvgval 32046 sibf0 32301 eulerpartlemt 32338 derang0 33131 topdifinffinlem 35518 matunitlindf 35775 0totbnd 35931 heiborlem6 35974 mzpcompact2lem 40573 rp-isfinite6 41125 0pwfi 42607 fouriercn 43773 rrxtopn0 43834 salexct 43873 sge0rnn0 43906 sge00 43914 sge0sn 43917 ovn0val 44088 ovn02 44106 hoidmv0val 44121 hoidmvle 44138 hoiqssbl 44163 von0val 44209 vonhoire 44210 vonioo 44220 vonicc 44223 vonsn 44229 lcoc0 45763 lco0 45768 |
Copyright terms: Public domain | W3C validator |