Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubclN | Structured version Visualization version GIF version |
Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polsubcl.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polsubcl.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
polsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
polsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | polsubcl.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2740 | . . 3 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | polsubcl.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | polval2N 37914 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
7 | hlop 37370 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
8 | 7 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
9 | hlclat 37366 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
10 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 3 | atssbase 37298 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
12 | sstr 3934 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
13 | 11, 12 | mpan2 688 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
14 | 10, 1 | clatlubcl 18217 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
15 | 9, 13, 14 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
16 | 10, 2 | opoccl 37202 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
17 | 8, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
18 | polsubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
19 | 10, 4, 18 | pmapsubclN 37954 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶) |
20 | 17, 19 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶) |
21 | 6, 20 | eqeltrd 2841 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6431 Basecbs 16908 occoc 16966 lubclub 18023 CLatccla 18212 OPcops 37180 Atomscatm 37271 HLchlt 37358 pmapcpmap 37505 ⊥𝑃cpolN 37910 PSubClcpscN 37942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-riotaBAD 36961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-undef 8078 df-proset 18009 df-poset 18027 df-plt 18044 df-lub 18060 df-glb 18061 df-join 18062 df-meet 18063 df-p0 18139 df-p1 18140 df-lat 18146 df-clat 18213 df-oposet 37184 df-ol 37186 df-oml 37187 df-covers 37274 df-ats 37275 df-atl 37306 df-cvlat 37330 df-hlat 37359 df-pmap 37512 df-polarityN 37911 df-psubclN 37943 |
This theorem is referenced by: osumcllem9N 37972 pexmidN 37977 |
Copyright terms: Public domain | W3C validator |