Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polsubclN Structured version   Visualization version   GIF version

Theorem polsubclN 39126
Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polsubcl.a 𝐴 = (Atomsβ€˜πΎ)
polsubcl.p βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
polsubcl.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
polsubclN ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘‹) ∈ 𝐢)

Proof of Theorem polsubclN
StepHypRef Expression
1 eqid 2732 . . 3 (lubβ€˜πΎ) = (lubβ€˜πΎ)
2 eqid 2732 . . 3 (ocβ€˜πΎ) = (ocβ€˜πΎ)
3 polsubcl.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 eqid 2732 . . 3 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
5 polsubcl.p . . 3 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
61, 2, 3, 4, 5polval2N 39080 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘‹) = ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))))
7 hlop 38535 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
87adantr 481 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ 𝐾 ∈ OP)
9 hlclat 38531 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
10 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 3atssbase 38463 . . . . . 6 𝐴 βŠ† (Baseβ€˜πΎ)
12 sstr 3990 . . . . . 6 ((𝑋 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1311, 12mpan2 689 . . . . 5 (𝑋 βŠ† 𝐴 β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
1410, 1clatlubcl 18460 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
159, 13, 14syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
1610, 2opoccl 38367 . . . 4 ((𝐾 ∈ OP ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ)) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
178, 15, 16syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ))
18 polsubcl.c . . . 4 𝐢 = (PSubClβ€˜πΎ)
1910, 4, 18pmapsubclN 39120 . . 3 ((𝐾 ∈ HL ∧ ((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) ∈ 𝐢)
2017, 19syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ((pmapβ€˜πΎ)β€˜((ocβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹))) ∈ 𝐢)
216, 20eqeltrd 2833 1 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘‹) ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  Basecbs 17148  occoc 17209  lubclub 18266  CLatccla 18455  OPcops 38345  Atomscatm 38436  HLchlt 38523  pmapcpmap 38671  βŠ₯𝑃cpolN 39076  PSubClcpscN 39108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-pmap 38678  df-polarityN 39077  df-psubclN 39109
This theorem is referenced by:  osumcllem9N  39138  pexmidN  39143
  Copyright terms: Public domain W3C validator