| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubclN | Structured version Visualization version GIF version | ||
| Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polsubcl.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polsubcl.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| polsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| polsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | polsubcl.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2735 | . . 3 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | polsubcl.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | polval2N 39925 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
| 7 | hlop 39380 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
| 9 | hlclat 39376 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 10 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | 10, 3 | atssbase 39308 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 12 | sstr 3967 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
| 13 | 11, 12 | mpan2 691 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 14 | 10, 1 | clatlubcl 18513 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 15 | 9, 13, 14 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 16 | 10, 2 | opoccl 39212 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 17 | 8, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 18 | polsubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 19 | 10, 4, 18 | pmapsubclN 39965 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶) |
| 20 | 17, 19 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶) |
| 21 | 6, 20 | eqeltrd 2834 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 Basecbs 17228 occoc 17279 lubclub 18321 CLatccla 18508 OPcops 39190 Atomscatm 39281 HLchlt 39368 pmapcpmap 39516 ⊥𝑃cpolN 39921 PSubClcpscN 39953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-pmap 39523 df-polarityN 39922 df-psubclN 39954 |
| This theorem is referenced by: osumcllem9N 39983 pexmidN 39988 |
| Copyright terms: Public domain | W3C validator |