Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polsubclN Structured version   Visualization version   GIF version

Theorem polsubclN 40057
Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polsubcl.a 𝐴 = (Atoms‘𝐾)
polsubcl.p = (⊥𝑃𝐾)
polsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
polsubclN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝐶)

Proof of Theorem polsubclN
StepHypRef Expression
1 eqid 2731 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 eqid 2731 . . 3 (oc‘𝐾) = (oc‘𝐾)
3 polsubcl.a . . 3 𝐴 = (Atoms‘𝐾)
4 eqid 2731 . . 3 (pmap‘𝐾) = (pmap‘𝐾)
5 polsubcl.p . . 3 = (⊥𝑃𝐾)
61, 2, 3, 4, 5polval2N 40011 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
7 hlop 39467 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
87adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
9 hlclat 39463 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
10 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 3atssbase 39395 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
12 sstr 3938 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1311, 12mpan2 691 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1410, 1clatlubcl 18415 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
159, 13, 14syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1610, 2opoccl 39299 . . . 4 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
178, 15, 16syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
18 polsubcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
1910, 4, 18pmapsubclN 40051 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶)
2017, 19syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶)
216, 20eqeltrd 2831 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  cfv 6487  Basecbs 17126  occoc 17175  lubclub 18221  CLatccla 18410  OPcops 39277  Atomscatm 39368  HLchlt 39455  pmapcpmap 39602  𝑃cpolN 40007  PSubClcpscN 40039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18206  df-poset 18225  df-plt 18240  df-lub 18256  df-glb 18257  df-join 18258  df-meet 18259  df-p0 18335  df-p1 18336  df-lat 18344  df-clat 18411  df-oposet 39281  df-ol 39283  df-oml 39284  df-covers 39371  df-ats 39372  df-atl 39403  df-cvlat 39427  df-hlat 39456  df-pmap 39609  df-polarityN 40008  df-psubclN 40040
This theorem is referenced by:  osumcllem9N  40069  pexmidN  40074
  Copyright terms: Public domain W3C validator