![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3polN | Structured version Visualization version GIF version |
Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | β’ π΄ = (AtomsβπΎ) |
2polss.p | β’ β₯ = (β₯πβπΎ) |
Ref | Expression |
---|---|
3polN | β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ β( β₯ βπ))) = ( β₯ βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlclat 38731 | . . . 4 β’ (πΎ β HL β πΎ β CLat) | |
2 | eqid 2724 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | 2polss.a | . . . . . 6 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atssbase 38663 | . . . . 5 β’ π΄ β (BaseβπΎ) |
5 | sstr 3983 | . . . . 5 β’ ((π β π΄ β§ π΄ β (BaseβπΎ)) β π β (BaseβπΎ)) | |
6 | 4, 5 | mpan2 688 | . . . 4 β’ (π β π΄ β π β (BaseβπΎ)) |
7 | eqid 2724 | . . . . 5 β’ (lubβπΎ) = (lubβπΎ) | |
8 | 2, 7 | clatlubcl 18464 | . . . 4 β’ ((πΎ β CLat β§ π β (BaseβπΎ)) β ((lubβπΎ)βπ) β (BaseβπΎ)) |
9 | 1, 6, 8 | syl2an 595 | . . 3 β’ ((πΎ β HL β§ π β π΄) β ((lubβπΎ)βπ) β (BaseβπΎ)) |
10 | eqid 2724 | . . . 4 β’ (ocβπΎ) = (ocβπΎ) | |
11 | eqid 2724 | . . . 4 β’ (pmapβπΎ) = (pmapβπΎ) | |
12 | 2polss.p | . . . 4 β’ β₯ = (β₯πβπΎ) | |
13 | 2, 10, 11, 12 | polpmapN 39286 | . . 3 β’ ((πΎ β HL β§ ((lubβπΎ)βπ) β (BaseβπΎ)) β ( β₯ β((pmapβπΎ)β((lubβπΎ)βπ))) = ((pmapβπΎ)β((ocβπΎ)β((lubβπΎ)βπ)))) |
14 | 9, 13 | syldan 590 | . 2 β’ ((πΎ β HL β§ π β π΄) β ( β₯ β((pmapβπΎ)β((lubβπΎ)βπ))) = ((pmapβπΎ)β((ocβπΎ)β((lubβπΎ)βπ)))) |
15 | 7, 3, 11, 12 | 2polvalN 39288 | . . 3 β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ βπ)) = ((pmapβπΎ)β((lubβπΎ)βπ))) |
16 | 15 | fveq2d 6886 | . 2 β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ β( β₯ βπ))) = ( β₯ β((pmapβπΎ)β((lubβπΎ)βπ)))) |
17 | 7, 10, 3, 11, 12 | polval2N 39280 | . 2 β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) = ((pmapβπΎ)β((ocβπΎ)β((lubβπΎ)βπ)))) |
18 | 14, 16, 17 | 3eqtr4d 2774 | 1 β’ ((πΎ β HL β§ π β π΄) β ( β₯ β( β₯ β( β₯ βπ))) = ( β₯ βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3941 βcfv 6534 Basecbs 17149 occoc 17210 lubclub 18270 CLatccla 18459 Atomscatm 38636 HLchlt 38723 pmapcpmap 38871 β₯πcpolN 39276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-proset 18256 df-poset 18274 df-plt 18291 df-lub 18307 df-glb 18308 df-join 18309 df-meet 18310 df-p0 18386 df-p1 18387 df-lat 18393 df-clat 18460 df-oposet 38549 df-ol 38551 df-oml 38552 df-covers 38639 df-ats 38640 df-atl 38671 df-cvlat 38695 df-hlat 38724 df-pmap 38878 df-polarityN 39277 |
This theorem is referenced by: 2polcon4bN 39292 2pmaplubN 39300 pmapocjN 39304 poml5N 39328 |
Copyright terms: Public domain | W3C validator |