Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3polN Structured version   Visualization version   GIF version

Theorem 3polN 39905
Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
3polN ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( 𝑆))

Proof of Theorem 3polN
StepHypRef Expression
1 hlclat 39347 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 2polss.a . . . . . 6 𝐴 = (Atoms‘𝐾)
42, 3atssbase 39279 . . . . 5 𝐴 ⊆ (Base‘𝐾)
5 sstr 3944 . . . . 5 ((𝑆𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾))
64, 5mpan2 691 . . . 4 (𝑆𝐴𝑆 ⊆ (Base‘𝐾))
7 eqid 2729 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
82, 7clatlubcl 18409 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
91, 6, 8syl2an 596 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
10 eqid 2729 . . . 4 (oc‘𝐾) = (oc‘𝐾)
11 eqid 2729 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
12 2polss.p . . . 4 = (⊥𝑃𝐾)
132, 10, 11, 12polpmapN 39901 . . 3 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ( ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
149, 13syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
157, 3, 11, 122polvalN 39903 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
1615fveq2d 6826 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))))
177, 10, 3, 11, 12polval2N 39895 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
1814, 16, 173eqtr4d 2774 1 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  Basecbs 17120  occoc 17169  lubclub 18215  CLatccla 18404  Atomscatm 39252  HLchlt 39339  pmapcpmap 39486  𝑃cpolN 39891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-pmap 39493  df-polarityN 39892
This theorem is referenced by:  2polcon4bN  39907  2pmaplubN  39915  pmapocjN  39919  poml5N  39943
  Copyright terms: Public domain W3C validator