Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3polN | Structured version Visualization version GIF version |
Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
3polN | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlclat 37299 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
2 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | 2polss.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atssbase 37231 | . . . . 5 ⊢ 𝐴 ⊆ (Base‘𝐾) |
5 | sstr 3925 | . . . . 5 ⊢ ((𝑆 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾)) | |
6 | 4, 5 | mpan2 687 | . . . 4 ⊢ (𝑆 ⊆ 𝐴 → 𝑆 ⊆ (Base‘𝐾)) |
7 | eqid 2738 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
8 | 2, 7 | clatlubcl 18136 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
9 | 1, 6, 8 | syl2an 595 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
10 | eqid 2738 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
11 | eqid 2738 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
12 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
13 | 2, 10, 11, 12 | polpmapN 37853 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ( ⊥ ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
14 | 9, 13 | syldan 590 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
15 | 7, 3, 11, 12 | 2polvalN 37855 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) |
16 | 15 | fveq2d 6760 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
17 | 7, 10, 3, 11, 12 | polval2N 37847 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
18 | 14, 16, 17 | 3eqtr4d 2788 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 Basecbs 16840 occoc 16896 lubclub 17942 CLatccla 18131 Atomscatm 37204 HLchlt 37291 pmapcpmap 37438 ⊥𝑃cpolN 37843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-pmap 37445 df-polarityN 37844 |
This theorem is referenced by: 2polcon4bN 37859 2pmaplubN 37867 pmapocjN 37871 poml5N 37895 |
Copyright terms: Public domain | W3C validator |