Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3polN Structured version   Visualization version   GIF version

Theorem 3polN 37857
Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
3polN ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( 𝑆))

Proof of Theorem 3polN
StepHypRef Expression
1 hlclat 37299 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ CLat)
2 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 2polss.a . . . . . 6 𝐴 = (Atoms‘𝐾)
42, 3atssbase 37231 . . . . 5 𝐴 ⊆ (Base‘𝐾)
5 sstr 3925 . . . . 5 ((𝑆𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾))
64, 5mpan2 687 . . . 4 (𝑆𝐴𝑆 ⊆ (Base‘𝐾))
7 eqid 2738 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
82, 7clatlubcl 18136 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
91, 6, 8syl2an 595 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
10 eqid 2738 . . . 4 (oc‘𝐾) = (oc‘𝐾)
11 eqid 2738 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
12 2polss.p . . . 4 = (⊥𝑃𝐾)
132, 10, 11, 12polpmapN 37853 . . 3 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ( ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
149, 13syldan 590 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
157, 3, 11, 122polvalN 37855 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
1615fveq2d 6760 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))))
177, 10, 3, 11, 12polval2N 37847 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
1814, 16, 173eqtr4d 2788 1 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  occoc 16896  lubclub 17942  CLatccla 18131  Atomscatm 37204  HLchlt 37291  pmapcpmap 37438  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-pmap 37445  df-polarityN 37844
This theorem is referenced by:  2polcon4bN  37859  2pmaplubN  37867  pmapocjN  37871  poml5N  37895
  Copyright terms: Public domain W3C validator