| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3polN | Structured version Visualization version GIF version | ||
| Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| 3polN | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlclat 39381 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 2 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | 2polss.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atssbase 39313 | . . . . 5 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 5 | sstr 3972 | . . . . 5 ⊢ ((𝑆 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾)) | |
| 6 | 4, 5 | mpan2 691 | . . . 4 ⊢ (𝑆 ⊆ 𝐴 → 𝑆 ⊆ (Base‘𝐾)) |
| 7 | eqid 2736 | . . . . 5 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 8 | 2, 7 | clatlubcl 18518 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
| 9 | 1, 6, 8 | syl2an 596 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
| 10 | eqid 2736 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 11 | eqid 2736 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 12 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 13 | 2, 10, 11, 12 | polpmapN 39936 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ( ⊥ ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
| 14 | 9, 13 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
| 15 | 7, 3, 11, 12 | 2polvalN 39938 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) |
| 16 | 15 | fveq2d 6885 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
| 17 | 7, 10, 3, 11, 12 | polval2N 39930 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
| 18 | 14, 16, 17 | 3eqtr4d 2781 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 Basecbs 17233 occoc 17284 lubclub 18326 CLatccla 18513 Atomscatm 39286 HLchlt 39373 pmapcpmap 39521 ⊥𝑃cpolN 39926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-pmap 39528 df-polarityN 39927 |
| This theorem is referenced by: 2polcon4bN 39942 2pmaplubN 39950 pmapocjN 39954 poml5N 39978 |
| Copyright terms: Public domain | W3C validator |