Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pmaplubN Structured version   Visualization version   GIF version

Theorem 2pmaplubN 38792
Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmaplub.u π‘ˆ = (lubβ€˜πΎ)
sspmaplub.a 𝐴 = (Atomsβ€˜πΎ)
sspmaplub.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
2pmaplubN ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ (π‘€β€˜(π‘ˆβ€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))) = (π‘€β€˜(π‘ˆβ€˜π‘†)))

Proof of Theorem 2pmaplubN
StepHypRef Expression
1 sspmaplub.u . . . . . . 7 π‘ˆ = (lubβ€˜πΎ)
2 sspmaplub.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
3 sspmaplub.m . . . . . . 7 𝑀 = (pmapβ€˜πΎ)
4 eqid 2732 . . . . . . 7 (βŠ₯π‘ƒβ€˜πΎ) = (βŠ₯π‘ƒβ€˜πΎ)
51, 2, 3, 42polvalN 38780 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)) = (π‘€β€˜(π‘ˆβ€˜π‘†)))
65fveq2d 6895 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†))) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜(π‘ˆβ€˜π‘†))))
76fveq2d 6895 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)))) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))))
82, 4polssatN 38774 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†) βŠ† 𝐴)
92, 43polN 38782 . . . . 5 ((𝐾 ∈ HL ∧ ((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†) βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)))) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)))
108, 9syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)))) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)))
117, 10eqtr3d 2774 . . 3 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)))
12 hlclat 38223 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
13 eqid 2732 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1413, 2atssbase 38155 . . . . . . 7 𝐴 βŠ† (Baseβ€˜πΎ)
15 sstr 3990 . . . . . . 7 ((𝑆 βŠ† 𝐴 ∧ 𝐴 βŠ† (Baseβ€˜πΎ)) β†’ 𝑆 βŠ† (Baseβ€˜πΎ))
1614, 15mpan2 689 . . . . . 6 (𝑆 βŠ† 𝐴 β†’ 𝑆 βŠ† (Baseβ€˜πΎ))
1713, 1clatlubcl 18455 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 βŠ† (Baseβ€˜πΎ)) β†’ (π‘ˆβ€˜π‘†) ∈ (Baseβ€˜πΎ))
1812, 16, 17syl2an 596 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ (π‘ˆβ€˜π‘†) ∈ (Baseβ€˜πΎ))
1913, 2, 3pmapssat 38625 . . . . 5 ((𝐾 ∈ HL ∧ (π‘ˆβ€˜π‘†) ∈ (Baseβ€˜πΎ)) β†’ (π‘€β€˜(π‘ˆβ€˜π‘†)) βŠ† 𝐴)
2018, 19syldan 591 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ (π‘€β€˜(π‘ˆβ€˜π‘†)) βŠ† 𝐴)
211, 2, 3, 42polvalN 38780 . . . 4 ((𝐾 ∈ HL ∧ (π‘€β€˜(π‘ˆβ€˜π‘†)) βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))) = (π‘€β€˜(π‘ˆβ€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))))
2220, 21syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))) = (π‘€β€˜(π‘ˆβ€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))))
2311, 22eqtr3d 2774 . 2 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜π‘†)) = (π‘€β€˜(π‘ˆβ€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))))
2423, 5eqtr3d 2774 1 ((𝐾 ∈ HL ∧ 𝑆 βŠ† 𝐴) β†’ (π‘€β€˜(π‘ˆβ€˜(π‘€β€˜(π‘ˆβ€˜π‘†)))) = (π‘€β€˜(π‘ˆβ€˜π‘†)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  Basecbs 17143  lubclub 18261  CLatccla 18450  Atomscatm 38128  HLchlt 38215  pmapcpmap 38363  βŠ₯𝑃cpolN 38768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-psubsp 38369  df-pmap 38370  df-polarityN 38769
This theorem is referenced by:  paddunN  38793
  Copyright terms: Public domain W3C validator