| Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2pmaplubN | Structured version Visualization version GIF version | ||
| Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sspmaplub.u | ⊢ 𝑈 = (lub‘𝐾) | 
| sspmaplub.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| sspmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) | 
| Ref | Expression | 
|---|---|
| 2pmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sspmaplub.u | . . . . . . 7 ⊢ 𝑈 = (lub‘𝐾) | |
| 2 | sspmaplub.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | sspmaplub.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | eqid 2737 | . . . . . . 7 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 5 | 1, 2, 3, 4 | 2polvalN 39916 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘𝑆))) | 
| 6 | 5 | fveq2d 6910 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) = ((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) | 
| 7 | 6 | fveq2d 6910 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆))))) | 
| 8 | 2, 4 | polssatN 39910 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘𝑆) ⊆ 𝐴) | 
| 9 | 2, 4 | 3polN 39918 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ((⊥𝑃‘𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) | 
| 10 | 8, 9 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) | 
| 11 | 7, 10 | eqtr3d 2779 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) | 
| 12 | hlclat 39359 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 13 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 2 | atssbase 39291 | . . . . . . 7 ⊢ 𝐴 ⊆ (Base‘𝐾) | 
| 15 | sstr 3992 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾)) | |
| 16 | 14, 15 | mpan2 691 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐴 → 𝑆 ⊆ (Base‘𝐾)) | 
| 17 | 13, 1 | clatlubcl 18548 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈‘𝑆) ∈ (Base‘𝐾)) | 
| 18 | 12, 16, 17 | syl2an 596 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑈‘𝑆) ∈ (Base‘𝐾)) | 
| 19 | 13, 2, 3 | pmapssat 39761 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑈‘𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) | 
| 20 | 18, 19 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) | 
| 21 | 1, 2, 3, 4 | 2polvalN 39916 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) | 
| 22 | 20, 21 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) | 
| 23 | 11, 22 | eqtr3d 2779 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) | 
| 24 | 23, 5 | eqtr3d 2779 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ‘cfv 6561 Basecbs 17247 lubclub 18355 CLatccla 18543 Atomscatm 39264 HLchlt 39351 pmapcpmap 39499 ⊥𝑃cpolN 39904 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-psubsp 39505 df-pmap 39506 df-polarityN 39905 | 
| This theorem is referenced by: paddunN 39929 | 
| Copyright terms: Public domain | W3C validator |