Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pmaplubN Structured version   Visualization version   GIF version

Theorem 2pmaplubN 37056
Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmaplub.u 𝑈 = (lub‘𝐾)
sspmaplub.a 𝐴 = (Atoms‘𝐾)
sspmaplub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
2pmaplubN ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))

Proof of Theorem 2pmaplubN
StepHypRef Expression
1 sspmaplub.u . . . . . . 7 𝑈 = (lub‘𝐾)
2 sspmaplub.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
3 sspmaplub.m . . . . . . 7 𝑀 = (pmap‘𝐾)
4 eqid 2821 . . . . . . 7 (⊥𝑃𝐾) = (⊥𝑃𝐾)
51, 2, 3, 42polvalN 37044 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈𝑆)))
65fveq2d 6669 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆))) = ((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆))))
76fveq2d 6669 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))))
82, 4polssatN 37038 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴)
92, 43polN 37046 . . . . 5 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
108, 9syldan 593 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
117, 10eqtr3d 2858 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
12 hlclat 36488 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
13 eqid 2821 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 2atssbase 36420 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
15 sstr 3975 . . . . . . 7 ((𝑆𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾))
1614, 15mpan2 689 . . . . . 6 (𝑆𝐴𝑆 ⊆ (Base‘𝐾))
1713, 1clatlubcl 17716 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈𝑆) ∈ (Base‘𝐾))
1812, 16, 17syl2an 597 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑈𝑆) ∈ (Base‘𝐾))
1913, 2, 3pmapssat 36889 . . . . 5 ((𝐾 ∈ HL ∧ (𝑈𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
2018, 19syldan 593 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
211, 2, 3, 42polvalN 37044 . . . 4 ((𝐾 ∈ HL ∧ (𝑀‘(𝑈𝑆)) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2220, 21syldan 593 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2311, 22eqtr3d 2858 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2423, 5eqtr3d 2858 1 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3936  cfv 6350  Basecbs 16477  lubclub 17546  CLatccla 17711  Atomscatm 36393  HLchlt 36480  pmapcpmap 36627  𝑃cpolN 37032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-undef 7933  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-psubsp 36633  df-pmap 36634  df-polarityN 37033
This theorem is referenced by:  paddunN  37057
  Copyright terms: Public domain W3C validator