Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pmaplubN Structured version   Visualization version   GIF version

Theorem 2pmaplubN 39399
Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmaplub.u 𝑈 = (lub‘𝐾)
sspmaplub.a 𝐴 = (Atoms‘𝐾)
sspmaplub.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
2pmaplubN ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))

Proof of Theorem 2pmaplubN
StepHypRef Expression
1 sspmaplub.u . . . . . . 7 𝑈 = (lub‘𝐾)
2 sspmaplub.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
3 sspmaplub.m . . . . . . 7 𝑀 = (pmap‘𝐾)
4 eqid 2728 . . . . . . 7 (⊥𝑃𝐾) = (⊥𝑃𝐾)
51, 2, 3, 42polvalN 39387 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈𝑆)))
65fveq2d 6901 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆))) = ((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆))))
76fveq2d 6901 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))))
82, 4polssatN 39381 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴)
92, 43polN 39389 . . . . 5 ((𝐾 ∈ HL ∧ ((⊥𝑃𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
108, 9syldan 590 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
117, 10eqtr3d 2770 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)))
12 hlclat 38830 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
13 eqid 2728 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 2atssbase 38762 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
15 sstr 3988 . . . . . . 7 ((𝑆𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾))
1614, 15mpan2 690 . . . . . 6 (𝑆𝐴𝑆 ⊆ (Base‘𝐾))
1713, 1clatlubcl 18495 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈𝑆) ∈ (Base‘𝐾))
1812, 16, 17syl2an 595 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑈𝑆) ∈ (Base‘𝐾))
1913, 2, 3pmapssat 39232 . . . . 5 ((𝐾 ∈ HL ∧ (𝑈𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
2018, 19syldan 590 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈𝑆)) ⊆ 𝐴)
211, 2, 3, 42polvalN 39387 . . . 4 ((𝐾 ∈ HL ∧ (𝑀‘(𝑈𝑆)) ⊆ 𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2220, 21syldan 590 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2311, 22eqtr3d 2770 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))))
2423, 5eqtr3d 2770 1 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3947  cfv 6548  Basecbs 17180  lubclub 18301  CLatccla 18490  Atomscatm 38735  HLchlt 38822  pmapcpmap 38970  𝑃cpolN 39375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-psubsp 38976  df-pmap 38977  df-polarityN 39376
This theorem is referenced by:  paddunN  39400
  Copyright terms: Public domain W3C validator