| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2pmaplubN | Structured version Visualization version GIF version | ||
| Description: Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspmaplub.u | ⊢ 𝑈 = (lub‘𝐾) |
| sspmaplub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| sspmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| 2pmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspmaplub.u | . . . . . . 7 ⊢ 𝑈 = (lub‘𝐾) | |
| 2 | sspmaplub.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | sspmaplub.m | . . . . . . 7 ⊢ 𝑀 = (pmap‘𝐾) | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 5 | 1, 2, 3, 4 | 2polvalN 39932 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘𝑆))) |
| 6 | 5 | fveq2d 6821 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) = ((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) |
| 7 | 6 | fveq2d 6821 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆))))) |
| 8 | 2, 4 | polssatN 39926 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘𝑆) ⊆ 𝐴) |
| 9 | 2, 4 | 3polN 39934 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ((⊥𝑃‘𝐾)‘𝑆) ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
| 10 | 8, 9 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
| 11 | 7, 10 | eqtr3d 2767 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
| 12 | hlclat 39376 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 13 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 2 | atssbase 39308 | . . . . . . 7 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 15 | sstr 3941 | . . . . . . 7 ⊢ ((𝑆 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑆 ⊆ (Base‘𝐾)) | |
| 16 | 14, 15 | mpan2 691 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐴 → 𝑆 ⊆ (Base‘𝐾)) |
| 17 | 13, 1 | clatlubcl 18401 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → (𝑈‘𝑆) ∈ (Base‘𝐾)) |
| 18 | 12, 16, 17 | syl2an 596 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑈‘𝑆) ∈ (Base‘𝐾)) |
| 19 | 13, 2, 3 | pmapssat 39777 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑈‘𝑆) ∈ (Base‘𝐾)) → (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) |
| 20 | 18, 19 | syldan 591 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) |
| 21 | 1, 2, 3, 4 | 2polvalN 39932 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘(𝑈‘𝑆)) ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) |
| 22 | 20, 21 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) |
| 23 | 11, 22 | eqtr3d 2767 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆))))) |
| 24 | 23, 5 | eqtr3d 2767 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 Basecbs 17112 lubclub 18207 CLatccla 18396 Atomscatm 39281 HLchlt 39368 pmapcpmap 39515 ⊥𝑃cpolN 39920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-psubsp 39521 df-pmap 39522 df-polarityN 39921 |
| This theorem is referenced by: paddunN 39945 |
| Copyright terms: Public domain | W3C validator |