Proof of Theorem poldmj1N
Step | Hyp | Ref
| Expression |
1 | | paddun.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
2 | | paddun.p |
. . 3
⊢ + =
(+𝑃‘𝐾) |
3 | | paddun.o |
. . 3
⊢ ⊥ =
(⊥𝑃‘𝐾) |
4 | 1, 2, 3 | paddunN 37503 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = ( ⊥ ‘(𝑆 ∪ 𝑇))) |
5 | | simp1 1133 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ HL) |
6 | | unss 4089 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) ↔ (𝑆 ∪ 𝑇) ⊆ 𝐴) |
7 | 6 | biimpi 219 |
. . . 4
⊢ ((𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ∪ 𝑇) ⊆ 𝐴) |
8 | 7 | 3adant1 1127 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ∪ 𝑇) ⊆ 𝐴) |
9 | | eqid 2758 |
. . . 4
⊢
(lub‘𝐾) =
(lub‘𝐾) |
10 | | eqid 2758 |
. . . 4
⊢
(oc‘𝐾) =
(oc‘𝐾) |
11 | | eqid 2758 |
. . . 4
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
12 | 9, 10, 1, 11, 3 | polval2N 37482 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∪ 𝑇) ⊆ 𝐴) → ( ⊥ ‘(𝑆 ∪ 𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))) |
13 | 5, 8, 12 | syl2anc 587 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 ∪ 𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))) |
14 | | hlop 36938 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
15 | 14 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ OP) |
16 | | hlclat 36934 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
17 | 16 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ CLat) |
18 | | simp2 1134 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑆 ⊆ 𝐴) |
19 | | eqid 2758 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
20 | 19, 1 | atssbase 36866 |
. . . . . . 7
⊢ 𝐴 ⊆ (Base‘𝐾) |
21 | 18, 20 | sstrdi 3904 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑆 ⊆ (Base‘𝐾)) |
22 | 19, 9 | clatlubcl 17788 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
23 | 17, 21, 22 | syl2anc 587 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
24 | 19, 10 | opoccl 36770 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧
((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾)) |
25 | 15, 23, 24 | syl2anc 587 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾)) |
26 | | simp3 1135 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑇 ⊆ 𝐴) |
27 | 26, 20 | sstrdi 3904 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑇 ⊆ (Base‘𝐾)) |
28 | 19, 9 | clatlubcl 17788 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) |
29 | 17, 27, 28 | syl2anc 587 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) |
30 | 19, 10 | opoccl 36770 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧
((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾)) |
31 | 15, 29, 30 | syl2anc 587 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾)) |
32 | | eqid 2758 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
33 | 19, 32, 1, 11 | pmapmeet 37349 |
. . . 4
⊢ ((𝐾 ∈ HL ∧
((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))) |
34 | 5, 25, 31, 33 | syl3anc 1368 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))) |
35 | | eqid 2758 |
. . . . . . . 8
⊢
(join‘𝐾) =
(join‘𝐾) |
36 | 19, 35, 9 | lubun 17799 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 ∪ 𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) |
37 | 17, 21, 27, 36 | syl3anc 1368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘(𝑆 ∪ 𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) |
38 | 37 | fveq2d 6662 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) = ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))) |
39 | | hlol 36937 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
40 | 39 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ OL) |
41 | 19, 35, 32, 10 | oldmj1 36797 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧
((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
42 | 40, 23, 29, 41 | syl3anc 1368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
43 | 38, 42 | eqtrd 2793 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
44 | 43 | fveq2d 6662 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))) |
45 | 9, 10, 1, 11, 3 | polval2N 37482 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
46 | 45 | 3adant3 1129 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆)))) |
47 | 9, 10, 1, 11, 3 | polval2N 37482 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
48 | 47 | 3adant2 1128 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
49 | 46, 48 | ineq12d 4118 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇)) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))) |
50 | 34, 44, 49 | 3eqtr4d 2803 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) = (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇))) |
51 | 4, 13, 50 | 3eqtrd 2797 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇))) |