Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poldmj1N Structured version   Visualization version   GIF version

Theorem poldmj1N 37504
Description: De Morgan's law for polarity of projective sum. (oldmj1 36797 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a 𝐴 = (Atoms‘𝐾)
paddun.p + = (+𝑃𝐾)
paddun.o = (⊥𝑃𝐾)
Assertion
Ref Expression
poldmj1N ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))

Proof of Theorem poldmj1N
StepHypRef Expression
1 paddun.a . . 3 𝐴 = (Atoms‘𝐾)
2 paddun.p . . 3 + = (+𝑃𝐾)
3 paddun.o . . 3 = (⊥𝑃𝐾)
41, 2, 3paddunN 37503 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
5 simp1 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
6 unss 4089 . . . . 5 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
76biimpi 219 . . . 4 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
873adant1 1127 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
9 eqid 2758 . . . 4 (lub‘𝐾) = (lub‘𝐾)
10 eqid 2758 . . . 4 (oc‘𝐾) = (oc‘𝐾)
11 eqid 2758 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
129, 10, 1, 11, 3polval2N 37482 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘(𝑆𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
135, 8, 12syl2anc 587 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
14 hlop 36938 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
15143ad2ant1 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ OP)
16 hlclat 36934 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
17163ad2ant1 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
18 simp2 1134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
19 eqid 2758 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 1atssbase 36866 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
2118, 20sstrdi 3904 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
2219, 9clatlubcl 17788 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
2317, 21, 22syl2anc 587 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
2419, 10opoccl 36770 . . . . 5 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾))
2515, 23, 24syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾))
26 simp3 1135 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
2726, 20sstrdi 3904 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
2819, 9clatlubcl 17788 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
2917, 27, 28syl2anc 587 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
3019, 10opoccl 36770 . . . . 5 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾))
3115, 29, 30syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾))
32 eqid 2758 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
3319, 32, 1, 11pmapmeet 37349 . . . 4 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
345, 25, 31, 33syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
35 eqid 2758 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
3619, 35, 9lubun 17799 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
3717, 21, 27, 36syl3anc 1368 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
3837fveq2d 6662 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
39 hlol 36937 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
40393ad2ant1 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ OL)
4119, 35, 32, 10oldmj1 36797 . . . . . 6 ((𝐾 ∈ OL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4240, 23, 29, 41syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4338, 42eqtrd 2793 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4443fveq2d 6662 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
459, 10, 1, 11, 3polval2N 37482 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
46453adant3 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
479, 10, 1, 11, 3polval2N 37482 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
48473adant2 1128 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4946, 48ineq12d 4118 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( 𝑆) ∩ ( 𝑇)) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
5034, 44, 493eqtr4d 2803 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) = (( 𝑆) ∩ ( 𝑇)))
514, 13, 503eqtrd 2797 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cun 3856  cin 3857  wss 3858  cfv 6335  (class class class)co 7150  Basecbs 16541  occoc 16631  lubclub 17618  joincjn 17620  meetcmee 17621  CLatccla 17783  OPcops 36748  OLcol 36750  Atomscatm 36839  HLchlt 36926  pmapcpmap 37073  +𝑃cpadd 37371  𝑃cpolN 37478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-riotaBAD 36529
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-undef 7949  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-p1 17716  df-lat 17722  df-clat 17784  df-oposet 36752  df-ol 36754  df-oml 36755  df-covers 36842  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-psubsp 37079  df-pmap 37080  df-padd 37372  df-polarityN 37479
This theorem is referenced by:  pmapj2N  37505  osumcllem3N  37534  pexmidN  37545
  Copyright terms: Public domain W3C validator