Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poldmj1N Structured version   Visualization version   GIF version

Theorem poldmj1N 35884
Description: De Morgan's law for polarity of projective sum. (oldmj1 35177 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a 𝐴 = (Atoms‘𝐾)
paddun.p + = (+𝑃𝐾)
paddun.o = (⊥𝑃𝐾)
Assertion
Ref Expression
poldmj1N ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))

Proof of Theorem poldmj1N
StepHypRef Expression
1 paddun.a . . 3 𝐴 = (Atoms‘𝐾)
2 paddun.p . . 3 + = (+𝑃𝐾)
3 paddun.o . . 3 = (⊥𝑃𝐾)
41, 2, 3paddunN 35883 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
5 simp1 1166 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
6 unss 3949 . . . . 5 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
76biimpi 207 . . . 4 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
873adant1 1160 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
9 eqid 2765 . . . 4 (lub‘𝐾) = (lub‘𝐾)
10 eqid 2765 . . . 4 (oc‘𝐾) = (oc‘𝐾)
11 eqid 2765 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
129, 10, 1, 11, 3polval2N 35862 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘(𝑆𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
135, 8, 12syl2anc 579 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
14 hlop 35318 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
15143ad2ant1 1163 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ OP)
16 hlclat 35314 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
17163ad2ant1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
18 simp2 1167 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
19 eqid 2765 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 1atssbase 35246 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
2118, 20syl6ss 3773 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
2219, 9clatlubcl 17378 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
2317, 21, 22syl2anc 579 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
2419, 10opoccl 35150 . . . . 5 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾))
2515, 23, 24syl2anc 579 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾))
26 simp3 1168 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
2726, 20syl6ss 3773 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
2819, 9clatlubcl 17378 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
2917, 27, 28syl2anc 579 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
3019, 10opoccl 35150 . . . . 5 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾))
3115, 29, 30syl2anc 579 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾))
32 eqid 2765 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
3319, 32, 1, 11pmapmeet 35729 . . . 4 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
345, 25, 31, 33syl3anc 1490 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
35 eqid 2765 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
3619, 35, 9lubun 17389 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
3717, 21, 27, 36syl3anc 1490 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
3837fveq2d 6379 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
39 hlol 35317 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
40393ad2ant1 1163 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ OL)
4119, 35, 32, 10oldmj1 35177 . . . . . 6 ((𝐾 ∈ OL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4240, 23, 29, 41syl3anc 1490 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4338, 42eqtrd 2799 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4443fveq2d 6379 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
459, 10, 1, 11, 3polval2N 35862 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
46453adant3 1162 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
479, 10, 1, 11, 3polval2N 35862 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
48473adant2 1161 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4946, 48ineq12d 3977 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( 𝑆) ∩ ( 𝑇)) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
5034, 44, 493eqtr4d 2809 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) = (( 𝑆) ∩ ( 𝑇)))
514, 13, 503eqtrd 2803 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cun 3730  cin 3731  wss 3732  cfv 6068  (class class class)co 6842  Basecbs 16130  occoc 16222  lubclub 17208  joincjn 17210  meetcmee 17211  CLatccla 17373  OPcops 35128  OLcol 35130  Atomscatm 35219  HLchlt 35306  pmapcpmap 35453  +𝑃cpadd 35751  𝑃cpolN 35858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-riotaBAD 34909
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-undef 7602  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-p1 17306  df-lat 17312  df-clat 17374  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307  df-psubsp 35459  df-pmap 35460  df-padd 35752  df-polarityN 35859
This theorem is referenced by:  pmapj2N  35885  osumcllem3N  35914  pexmidN  35925
  Copyright terms: Public domain W3C validator