Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poldmj1N Structured version   Visualization version   GIF version

Theorem poldmj1N 39929
Description: De Morgan's law for polarity of projective sum. (oldmj1 39221 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a 𝐴 = (Atoms‘𝐾)
paddun.p + = (+𝑃𝐾)
paddun.o = (⊥𝑃𝐾)
Assertion
Ref Expression
poldmj1N ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))

Proof of Theorem poldmj1N
StepHypRef Expression
1 paddun.a . . 3 𝐴 = (Atoms‘𝐾)
2 paddun.p . . 3 + = (+𝑃𝐾)
3 paddun.o . . 3 = (⊥𝑃𝐾)
41, 2, 3paddunN 39928 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
5 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
6 unss 4156 . . . . 5 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
76biimpi 216 . . . 4 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
873adant1 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
9 eqid 2730 . . . 4 (lub‘𝐾) = (lub‘𝐾)
10 eqid 2730 . . . 4 (oc‘𝐾) = (oc‘𝐾)
11 eqid 2730 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
129, 10, 1, 11, 3polval2N 39907 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘(𝑆𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
135, 8, 12syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
14 hlop 39362 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
15143ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ OP)
16 hlclat 39358 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
17163ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
18 simp2 1137 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
19 eqid 2730 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2019, 1atssbase 39290 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
2118, 20sstrdi 3962 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
2219, 9clatlubcl 18469 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
2317, 21, 22syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
2419, 10opoccl 39194 . . . . 5 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾))
2515, 23, 24syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾))
26 simp3 1138 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
2726, 20sstrdi 3962 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
2819, 9clatlubcl 18469 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
2917, 27, 28syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
3019, 10opoccl 39194 . . . . 5 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾))
3115, 29, 30syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾))
32 eqid 2730 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
3319, 32, 1, 11pmapmeet 39774 . . . 4 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑆)) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
345, 25, 31, 33syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
35 eqid 2730 . . . . . . . 8 (join‘𝐾) = (join‘𝐾)
3619, 35, 9lubun 18481 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
3717, 21, 27, 36syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
3837fveq2d 6865 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
39 hlol 39361 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
40393ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ OL)
4119, 35, 32, 10oldmj1 39221 . . . . . 6 ((𝐾 ∈ OL ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4240, 23, 29, 41syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4338, 42eqtrd 2765 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = (((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4443fveq2d 6865 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑆))(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
459, 10, 1, 11, 3polval2N 39907 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
46453adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))))
479, 10, 1, 11, 3polval2N 39907 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
48473adant2 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇))))
4946, 48ineq12d 4187 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( 𝑆) ∩ ( 𝑇)) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑆))) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑇)))))
5034, 44, 493eqtr4d 2775 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) = (( 𝑆) ∩ ( 𝑇)))
514, 13, 503eqtrd 2769 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  occoc 17235  lubclub 18277  joincjn 18279  meetcmee 18280  CLatccla 18464  OPcops 39172  OLcol 39174  Atomscatm 39263  HLchlt 39350  pmapcpmap 39498  +𝑃cpadd 39796  𝑃cpolN 39903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-polarityN 39904
This theorem is referenced by:  pmapj2N  39930  osumcllem3N  39959  pexmidN  39970
  Copyright terms: Public domain W3C validator