![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubN | Structured version Visualization version GIF version |
Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polsubsp.a | β’ π΄ = (AtomsβπΎ) |
polsubsp.s | β’ π = (PSubSpβπΎ) |
polsubsp.p | β’ β₯ = (β₯πβπΎ) |
Ref | Expression |
---|---|
polsubN | β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (lubβπΎ) = (lubβπΎ) | |
2 | eqid 2732 | . . 3 β’ (ocβπΎ) = (ocβπΎ) | |
3 | polsubsp.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | eqid 2732 | . . 3 β’ (pmapβπΎ) = (pmapβπΎ) | |
5 | polsubsp.p | . . 3 β’ β₯ = (β₯πβπΎ) | |
6 | 1, 2, 3, 4, 5 | polval2N 38765 | . 2 β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) = ((pmapβπΎ)β((ocβπΎ)β((lubβπΎ)βπ)))) |
7 | hllat 38221 | . . . 4 β’ (πΎ β HL β πΎ β Lat) | |
8 | 7 | adantr 481 | . . 3 β’ ((πΎ β HL β§ π β π΄) β πΎ β Lat) |
9 | hlop 38220 | . . . . 5 β’ (πΎ β HL β πΎ β OP) | |
10 | 9 | adantr 481 | . . . 4 β’ ((πΎ β HL β§ π β π΄) β πΎ β OP) |
11 | hlclat 38216 | . . . . 5 β’ (πΎ β HL β πΎ β CLat) | |
12 | eqid 2732 | . . . . . . 7 β’ (BaseβπΎ) = (BaseβπΎ) | |
13 | 12, 3 | atssbase 38148 | . . . . . 6 β’ π΄ β (BaseβπΎ) |
14 | sstr 3989 | . . . . . 6 β’ ((π β π΄ β§ π΄ β (BaseβπΎ)) β π β (BaseβπΎ)) | |
15 | 13, 14 | mpan2 689 | . . . . 5 β’ (π β π΄ β π β (BaseβπΎ)) |
16 | 12, 1 | clatlubcl 18452 | . . . . 5 β’ ((πΎ β CLat β§ π β (BaseβπΎ)) β ((lubβπΎ)βπ) β (BaseβπΎ)) |
17 | 11, 15, 16 | syl2an 596 | . . . 4 β’ ((πΎ β HL β§ π β π΄) β ((lubβπΎ)βπ) β (BaseβπΎ)) |
18 | 12, 2 | opoccl 38052 | . . . 4 β’ ((πΎ β OP β§ ((lubβπΎ)βπ) β (BaseβπΎ)) β ((ocβπΎ)β((lubβπΎ)βπ)) β (BaseβπΎ)) |
19 | 10, 17, 18 | syl2anc 584 | . . 3 β’ ((πΎ β HL β§ π β π΄) β ((ocβπΎ)β((lubβπΎ)βπ)) β (BaseβπΎ)) |
20 | polsubsp.s | . . . 4 β’ π = (PSubSpβπΎ) | |
21 | 12, 20, 4 | pmapsub 38627 | . . 3 β’ ((πΎ β Lat β§ ((ocβπΎ)β((lubβπΎ)βπ)) β (BaseβπΎ)) β ((pmapβπΎ)β((ocβπΎ)β((lubβπΎ)βπ))) β π) |
22 | 8, 19, 21 | syl2anc 584 | . 2 β’ ((πΎ β HL β§ π β π΄) β ((pmapβπΎ)β((ocβπΎ)β((lubβπΎ)βπ))) β π) |
23 | 6, 22 | eqeltrd 2833 | 1 β’ ((πΎ β HL β§ π β π΄) β ( β₯ βπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 βcfv 6540 Basecbs 17140 occoc 17201 lubclub 18258 Latclat 18380 CLatccla 18447 OPcops 38030 Atomscatm 38121 HLchlt 38208 PSubSpcpsubsp 38355 pmapcpmap 38356 β₯πcpolN 38761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-psubsp 38362 df-pmap 38363 df-polarityN 38762 |
This theorem is referenced by: polssatN 38767 pclss2polN 38780 psubclsubN 38799 osumcllem1N 38815 |
Copyright terms: Public domain | W3C validator |