| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubN | Structured version Visualization version GIF version | ||
| Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polsubsp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polsubsp.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| polsubsp.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polsubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 2 | eqid 2737 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | polsubsp.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2737 | . . 3 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | polsubsp.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | polval2N 39908 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
| 7 | hllat 39364 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ Lat) |
| 9 | hlop 39363 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
| 11 | hlclat 39359 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 12 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | 12, 3 | atssbase 39291 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 14 | sstr 3992 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
| 15 | 13, 14 | mpan2 691 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 16 | 12, 1 | clatlubcl 18548 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 17 | 11, 15, 16 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 18 | 12, 2 | opoccl 39195 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 19 | 10, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 20 | polsubsp.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 21 | 12, 20, 4 | pmapsub 39770 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆) |
| 22 | 8, 19, 21 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆) |
| 23 | 6, 22 | eqeltrd 2841 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ‘cfv 6561 Basecbs 17247 occoc 17305 lubclub 18355 Latclat 18476 CLatccla 18543 OPcops 39173 Atomscatm 39264 HLchlt 39351 PSubSpcpsubsp 39498 pmapcpmap 39499 ⊥𝑃cpolN 39904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p1 18471 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-psubsp 39505 df-pmap 39506 df-polarityN 39905 |
| This theorem is referenced by: polssatN 39910 pclss2polN 39923 psubclsubN 39942 osumcllem1N 39958 |
| Copyright terms: Public domain | W3C validator |