Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polsubN Structured version   Visualization version   GIF version

Theorem polsubN 39906
Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polsubsp.a 𝐴 = (Atoms‘𝐾)
polsubsp.s 𝑆 = (PSubSp‘𝐾)
polsubsp.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polsubN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝑆)

Proof of Theorem polsubN
StepHypRef Expression
1 eqid 2729 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 eqid 2729 . . 3 (oc‘𝐾) = (oc‘𝐾)
3 polsubsp.a . . 3 𝐴 = (Atoms‘𝐾)
4 eqid 2729 . . 3 (pmap‘𝐾) = (pmap‘𝐾)
5 polsubsp.p . . 3 = (⊥𝑃𝐾)
61, 2, 3, 4, 5polval2N 39905 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
7 hllat 39362 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
87adantr 480 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ Lat)
9 hlop 39361 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
109adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
11 hlclat 39357 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
12 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1312, 3atssbase 39289 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
14 sstr 3944 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1513, 14mpan2 691 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1612, 1clatlubcl 18409 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1711, 15, 16syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1812, 2opoccl 39193 . . . 4 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
1910, 17, 18syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
20 polsubsp.s . . . 4 𝑆 = (PSubSp‘𝐾)
2112, 20, 4pmapsub 39767 . . 3 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆)
228, 19, 21syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆)
236, 22eqeltrd 2828 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  Basecbs 17120  occoc 17169  lubclub 18215  Latclat 18337  CLatccla 18404  OPcops 39171  Atomscatm 39262  HLchlt 39349  PSubSpcpsubsp 39495  pmapcpmap 39496  𝑃cpolN 39901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39175  df-ol 39177  df-oml 39178  df-ats 39266  df-atl 39297  df-cvlat 39321  df-hlat 39350  df-psubsp 39502  df-pmap 39503  df-polarityN 39902
This theorem is referenced by:  polssatN  39907  pclss2polN  39920  psubclsubN  39939  osumcllem1N  39955
  Copyright terms: Public domain W3C validator