| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubN | Structured version Visualization version GIF version | ||
| Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polsubsp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polsubsp.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| polsubsp.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polsubN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | polsubsp.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | polsubsp.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | polval2N 40004 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
| 7 | hllat 39461 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ Lat) |
| 9 | hlop 39460 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
| 11 | hlclat 39456 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | 12, 3 | atssbase 39388 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 14 | sstr 3938 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
| 15 | 13, 14 | mpan2 691 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 16 | 12, 1 | clatlubcl 18409 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 17 | 11, 15, 16 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 18 | 12, 2 | opoccl 39292 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 19 | 10, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
| 20 | polsubsp.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 21 | 12, 20, 4 | pmapsub 39866 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆) |
| 22 | 8, 19, 21 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆) |
| 23 | 6, 22 | eqeltrd 2831 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 Basecbs 17120 occoc 17169 lubclub 18215 Latclat 18337 CLatccla 18404 OPcops 39270 Atomscatm 39361 HLchlt 39448 PSubSpcpsubsp 39594 pmapcpmap 39595 ⊥𝑃cpolN 40000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39274 df-ol 39276 df-oml 39277 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 df-psubsp 39601 df-pmap 39602 df-polarityN 40001 |
| This theorem is referenced by: polssatN 40006 pclss2polN 40019 psubclsubN 40038 osumcllem1N 40054 |
| Copyright terms: Public domain | W3C validator |