Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 35325. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4160 | . . 3 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
2 | sneq 4581 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝐴 → {(𝑌 ∩ 𝐴)} = {𝐴}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ⊆ 𝑌 → {(𝑌 ∩ 𝐴)} = {𝐴}) |
4 | ssexg 5262 | . . . 4 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐴 ∈ V) | |
5 | 4 | ancoms 459 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
6 | bj-restsn 35325 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 5, 6 | syldan 591 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | eqeq2 2749 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝐴} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝐴})) | |
9 | 8 | biimpa 477 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝐴} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝐴}) |
10 | 3, 7, 9 | syl2an2 683 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∩ cin 3896 ⊆ wss 3897 {csn 4571 (class class class)co 7317 ↾t crest 17208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-rest 17210 |
This theorem is referenced by: bj-restsn10 35329 bj-restsnid 35330 |
Copyright terms: Public domain | W3C validator |