![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 35951. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4214 | . . 3 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
2 | sneq 4637 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝐴 → {(𝑌 ∩ 𝐴)} = {𝐴}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ⊆ 𝑌 → {(𝑌 ∩ 𝐴)} = {𝐴}) |
4 | ssexg 5322 | . . . 4 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐴 ∈ V) | |
5 | 4 | ancoms 459 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
6 | bj-restsn 35951 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 5, 6 | syldan 591 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | eqeq2 2744 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝐴} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝐴})) | |
9 | 8 | biimpa 477 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝐴} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝐴}) |
10 | 3, 7, 9 | syl2an2 684 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 {csn 4627 (class class class)co 7405 ↾t crest 17362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rest 17364 |
This theorem is referenced by: bj-restsn10 35955 bj-restsnid 35956 |
Copyright terms: Public domain | W3C validator |