Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnss Structured version   Visualization version   GIF version

Theorem bj-restsnss 35554
Description: Special case of bj-restsn 35553. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnss ((𝑌𝑉𝐴𝑌) → ({𝑌} ↾t 𝐴) = {𝐴})

Proof of Theorem bj-restsnss
StepHypRef Expression
1 sseqin2 4175 . . 3 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
2 sneq 4596 . . 3 ((𝑌𝐴) = 𝐴 → {(𝑌𝐴)} = {𝐴})
31, 2sylbi 216 . 2 (𝐴𝑌 → {(𝑌𝐴)} = {𝐴})
4 ssexg 5280 . . . 4 ((𝐴𝑌𝑌𝑉) → 𝐴 ∈ V)
54ancoms 459 . . 3 ((𝑌𝑉𝐴𝑌) → 𝐴 ∈ V)
6 bj-restsn 35553 . . 3 ((𝑌𝑉𝐴 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
75, 6syldan 591 . 2 ((𝑌𝑉𝐴𝑌) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
8 eqeq2 2748 . . 3 ({(𝑌𝐴)} = {𝐴} → (({𝑌} ↾t 𝐴) = {(𝑌𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝐴}))
98biimpa 477 . 2 (({(𝑌𝐴)} = {𝐴} ∧ ({𝑌} ↾t 𝐴) = {(𝑌𝐴)}) → ({𝑌} ↾t 𝐴) = {𝐴})
103, 7, 9syl2an2 684 1 ((𝑌𝑉𝐴𝑌) → ({𝑌} ↾t 𝐴) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cin 3909  wss 3910  {csn 4586  (class class class)co 7357  t crest 17302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-rest 17304
This theorem is referenced by:  bj-restsn10  35557  bj-restsnid  35558
  Copyright terms: Public domain W3C validator