| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss | Structured version Visualization version GIF version | ||
| Description: Special case of bj-restsn 37116. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restsnss | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 4168 | . . 3 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
| 2 | sneq 4581 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝐴 → {(𝑌 ∩ 𝐴)} = {𝐴}) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐴 ⊆ 𝑌 → {(𝑌 ∩ 𝐴)} = {𝐴}) |
| 4 | ssexg 5256 | . . . 4 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐴 ∈ V) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
| 6 | bj-restsn 37116 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
| 7 | 5, 6 | syldan 591 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
| 8 | eqeq2 2743 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝐴} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝐴})) | |
| 9 | 8 | biimpa 476 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝐴} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝐴}) |
| 10 | 3, 7, 9 | syl2an2 686 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 {csn 4571 (class class class)co 7341 ↾t crest 17319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rest 17321 |
| This theorem is referenced by: bj-restsn10 37120 bj-restsnid 37121 |
| Copyright terms: Public domain | W3C validator |