![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 35553. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss | ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 4175 | . . 3 ⊢ (𝐴 ⊆ 𝑌 ↔ (𝑌 ∩ 𝐴) = 𝐴) | |
2 | sneq 4596 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝐴 → {(𝑌 ∩ 𝐴)} = {𝐴}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ⊆ 𝑌 → {(𝑌 ∩ 𝐴)} = {𝐴}) |
4 | ssexg 5280 | . . . 4 ⊢ ((𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑉) → 𝐴 ∈ V) | |
5 | 4 | ancoms 459 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → 𝐴 ∈ V) |
6 | bj-restsn 35553 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 5, 6 | syldan 591 | . 2 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | eqeq2 2748 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝐴} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝐴})) | |
9 | 8 | biimpa 477 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝐴} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝐴}) |
10 | 3, 7, 9 | syl2an2 684 | 1 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∩ cin 3909 ⊆ wss 3910 {csn 4586 (class class class)co 7357 ↾t crest 17302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-rest 17304 |
This theorem is referenced by: bj-restsn10 35557 bj-restsnid 35558 |
Copyright terms: Public domain | W3C validator |