Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnss Structured version   Visualization version   GIF version

Theorem bj-restsnss 37044
Description: Special case of bj-restsn 37043. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnss ((𝑌𝑉𝐴𝑌) → ({𝑌} ↾t 𝐴) = {𝐴})

Proof of Theorem bj-restsnss
StepHypRef Expression
1 sseqin2 4182 . . 3 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
2 sneq 4595 . . 3 ((𝑌𝐴) = 𝐴 → {(𝑌𝐴)} = {𝐴})
31, 2sylbi 217 . 2 (𝐴𝑌 → {(𝑌𝐴)} = {𝐴})
4 ssexg 5273 . . . 4 ((𝐴𝑌𝑌𝑉) → 𝐴 ∈ V)
54ancoms 458 . . 3 ((𝑌𝑉𝐴𝑌) → 𝐴 ∈ V)
6 bj-restsn 37043 . . 3 ((𝑌𝑉𝐴 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
75, 6syldan 591 . 2 ((𝑌𝑉𝐴𝑌) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
8 eqeq2 2741 . . 3 ({(𝑌𝐴)} = {𝐴} → (({𝑌} ↾t 𝐴) = {(𝑌𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝐴}))
98biimpa 476 . 2 (({(𝑌𝐴)} = {𝐴} ∧ ({𝑌} ↾t 𝐴) = {(𝑌𝐴)}) → ({𝑌} ↾t 𝐴) = {𝐴})
103, 7, 9syl2an2 686 1 ((𝑌𝑉𝐴𝑌) → ({𝑌} ↾t 𝐴) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  {csn 4585  (class class class)co 7369  t crest 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rest 17361
This theorem is referenced by:  bj-restsn10  37047  bj-restsnid  37048
  Copyright terms: Public domain W3C validator