![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss2 | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 36484. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3961 | . . 3 ⊢ (𝑌 ⊆ 𝐴 ↔ (𝑌 ∩ 𝐴) = 𝑌) | |
2 | sneq 4634 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝑌 → {(𝑌 ∩ 𝐴)} = {𝑌}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝑌 ⊆ 𝐴 → {(𝑌 ∩ 𝐴)} = {𝑌}) |
4 | ssexg 5317 | . . . 4 ⊢ ((𝑌 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ V) | |
5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → 𝑌 ∈ V) |
6 | bj-restsn 36484 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | 5, 7 | syldan 590 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
9 | eqeq2 2739 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌})) | |
10 | 9 | biimpa 476 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌}) |
11 | 3, 8, 10 | syl2an2 685 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∩ cin 3943 ⊆ wss 3944 {csn 4624 (class class class)co 7414 ↾t crest 17387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rest 17389 |
This theorem is referenced by: bj-restsn0 36487 |
Copyright terms: Public domain | W3C validator |