| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss2 | Structured version Visualization version GIF version | ||
| Description: Special case of bj-restsn 37043. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restsnss2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3929 | . . 3 ⊢ (𝑌 ⊆ 𝐴 ↔ (𝑌 ∩ 𝐴) = 𝑌) | |
| 2 | sneq 4595 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝑌 → {(𝑌 ∩ 𝐴)} = {𝑌}) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝑌 ⊆ 𝐴 → {(𝑌 ∩ 𝐴)} = {𝑌}) |
| 4 | ssexg 5273 | . . . 4 ⊢ ((𝑌 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ V) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → 𝑌 ∈ V) |
| 6 | bj-restsn 37043 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
| 8 | 5, 7 | syldan 591 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
| 9 | eqeq2 2741 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌})) | |
| 10 | 9 | biimpa 476 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌}) |
| 11 | 3, 8, 10 | syl2an2 686 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 {csn 4585 (class class class)co 7369 ↾t crest 17359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-rest 17361 |
| This theorem is referenced by: bj-restsn0 37046 |
| Copyright terms: Public domain | W3C validator |