![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss2 | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 36614. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3959 | . . 3 ⊢ (𝑌 ⊆ 𝐴 ↔ (𝑌 ∩ 𝐴) = 𝑌) | |
2 | sneq 4635 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝑌 → {(𝑌 ∩ 𝐴)} = {𝑌}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝑌 ⊆ 𝐴 → {(𝑌 ∩ 𝐴)} = {𝑌}) |
4 | ssexg 5319 | . . . 4 ⊢ ((𝑌 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ V) | |
5 | 4 | ancoms 457 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → 𝑌 ∈ V) |
6 | bj-restsn 36614 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 6 | ancoms 457 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | 5, 7 | syldan 589 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
9 | eqeq2 2737 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌})) | |
10 | 9 | biimpa 475 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌}) |
11 | 3, 8, 10 | syl2an2 684 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∩ cin 3940 ⊆ wss 3941 {csn 4625 (class class class)co 7413 ↾t crest 17396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-rest 17398 |
This theorem is referenced by: bj-restsn0 36617 |
Copyright terms: Public domain | W3C validator |