Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnss2 Structured version   Visualization version   GIF version

Theorem bj-restsnss2 35953
Description: Special case of bj-restsn 35951. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnss2 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {𝑌})

Proof of Theorem bj-restsnss2
StepHypRef Expression
1 df-ss 3964 . . 3 (𝑌𝐴 ↔ (𝑌𝐴) = 𝑌)
2 sneq 4637 . . 3 ((𝑌𝐴) = 𝑌 → {(𝑌𝐴)} = {𝑌})
31, 2sylbi 216 . 2 (𝑌𝐴 → {(𝑌𝐴)} = {𝑌})
4 ssexg 5322 . . . 4 ((𝑌𝐴𝐴𝑉) → 𝑌 ∈ V)
54ancoms 459 . . 3 ((𝐴𝑉𝑌𝐴) → 𝑌 ∈ V)
6 bj-restsn 35951 . . . 4 ((𝑌 ∈ V ∧ 𝐴𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
76ancoms 459 . . 3 ((𝐴𝑉𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
85, 7syldan 591 . 2 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
9 eqeq2 2744 . . 3 ({(𝑌𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌}))
109biimpa 477 . 2 (({(𝑌𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌})
113, 8, 10syl2an2 684 1 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {𝑌})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cin 3946  wss 3947  {csn 4627  (class class class)co 7405  t crest 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rest 17364
This theorem is referenced by:  bj-restsn0  35954
  Copyright terms: Public domain W3C validator