Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss2 | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 35407. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3918 | . . 3 ⊢ (𝑌 ⊆ 𝐴 ↔ (𝑌 ∩ 𝐴) = 𝑌) | |
2 | sneq 4587 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝑌 → {(𝑌 ∩ 𝐴)} = {𝑌}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝑌 ⊆ 𝐴 → {(𝑌 ∩ 𝐴)} = {𝑌}) |
4 | ssexg 5271 | . . . 4 ⊢ ((𝑌 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ V) | |
5 | 4 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → 𝑌 ∈ V) |
6 | bj-restsn 35407 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 6 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | 5, 7 | syldan 592 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
9 | eqeq2 2749 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌})) | |
10 | 9 | biimpa 478 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌}) |
11 | 3, 8, 10 | syl2an2 684 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ∩ cin 3900 ⊆ wss 3901 {csn 4577 (class class class)co 7341 ↾t crest 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rest 17230 |
This theorem is referenced by: bj-restsn0 35410 |
Copyright terms: Public domain | W3C validator |