Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnss2 Structured version   Visualization version   GIF version

Theorem bj-restsnss2 37085
Description: Special case of bj-restsn 37083. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnss2 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {𝑌})

Proof of Theorem bj-restsnss2
StepHypRef Expression
1 dfss2 3969 . . 3 (𝑌𝐴 ↔ (𝑌𝐴) = 𝑌)
2 sneq 4636 . . 3 ((𝑌𝐴) = 𝑌 → {(𝑌𝐴)} = {𝑌})
31, 2sylbi 217 . 2 (𝑌𝐴 → {(𝑌𝐴)} = {𝑌})
4 ssexg 5323 . . . 4 ((𝑌𝐴𝐴𝑉) → 𝑌 ∈ V)
54ancoms 458 . . 3 ((𝐴𝑉𝑌𝐴) → 𝑌 ∈ V)
6 bj-restsn 37083 . . . 4 ((𝑌 ∈ V ∧ 𝐴𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
76ancoms 458 . . 3 ((𝐴𝑉𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
85, 7syldan 591 . 2 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
9 eqeq2 2749 . . 3 ({(𝑌𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌}))
109biimpa 476 . 2 (({(𝑌𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌})
113, 8, 10syl2an2 686 1 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {𝑌})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  {csn 4626  (class class class)co 7431  t crest 17465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17467
This theorem is referenced by:  bj-restsn0  37086
  Copyright terms: Public domain W3C validator