| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3501 | . 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | 
| 2 |  | elex 3501 | . 2
⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ V) | 
| 3 |  | brwdom2 9613 | . . . . 5
⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌∃𝑓 𝑓:𝑧–onto→𝑋)) | 
| 4 | 3 | adantl 481 | . . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌∃𝑓 𝑓:𝑧–onto→𝑋)) | 
| 5 |  | dffo3 7122 | . . . . . . . 8
⊢ (𝑓:𝑧–onto→𝑋 ↔ (𝑓:𝑧⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦))) | 
| 6 | 5 | simprbi 496 | . . . . . . 7
⊢ (𝑓:𝑧–onto→𝑋 → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦)) | 
| 7 |  | elpwi 4607 | . . . . . . . . . 10
⊢ (𝑧 ∈ 𝒫 𝑌 → 𝑧 ⊆ 𝑌) | 
| 8 |  | ssrexv 4053 | . . . . . . . . . 10
⊢ (𝑧 ⊆ 𝑌 → (∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 9 | 7, 8 | syl 17 | . . . . . . . . 9
⊢ (𝑧 ∈ 𝒫 𝑌 → (∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 10 | 9 | adantl 481 | . . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 11 | 10 | ralimdv 3169 | . . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 12 | 6, 11 | syl5 34 | . . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (𝑓:𝑧–onto→𝑋 → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 13 | 12 | eximdv 1917 | . . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑓 𝑓:𝑧–onto→𝑋 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 14 | 13 | rexlimdva 3155 | . . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑧 ∈ 𝒫 𝑌∃𝑓 𝑓:𝑧–onto→𝑋 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 15 | 4, 14 | sylbid 240 | . . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 16 |  | simpll 767 | . . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → 𝑋 ∈ V) | 
| 17 |  | simplr 769 | . . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → 𝑌 ∈ V) | 
| 18 |  | eqeq1 2741 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = (𝑓‘𝑦) ↔ 𝑧 = (𝑓‘𝑦))) | 
| 19 | 18 | rexbidv 3179 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) ↔ ∃𝑦 ∈ 𝑌 𝑧 = (𝑓‘𝑦))) | 
| 20 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑓‘𝑦) = (𝑓‘𝑤)) | 
| 21 | 20 | eqeq2d 2748 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (𝑧 = (𝑓‘𝑦) ↔ 𝑧 = (𝑓‘𝑤))) | 
| 22 | 21 | cbvrexvw 3238 | . . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑌 𝑧 = (𝑓‘𝑦) ↔ ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) | 
| 23 | 19, 22 | bitrdi 287 | . . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) ↔ ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤))) | 
| 24 | 23 | cbvralvw 3237 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) ↔ ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) | 
| 25 | 24 | biimpi 216 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) | 
| 26 | 25 | adantl 481 | . . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) | 
| 27 | 26 | r19.21bi 3251 | . . . . . 6
⊢ ((((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) ∧ 𝑧 ∈ 𝑋) → ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) | 
| 28 | 16, 17, 27 | wdom2d 9620 | . . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → 𝑋 ≼* 𝑌) | 
| 29 | 28 | ex 412 | . . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) → 𝑋 ≼* 𝑌)) | 
| 30 | 29 | exlimdv 1933 | . . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) → 𝑋 ≼* 𝑌)) | 
| 31 | 15, 30 | impbid 212 | . 2
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | 
| 32 | 1, 2, 31 | syl2an 596 | 1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |