MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3 Structured version   Visualization version   GIF version

Theorem brwdom3 9048
Description: Condition for weak dominance with a condition reminiscent of wdomd 9047. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
brwdom3 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Distinct variable groups:   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem brwdom3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3514 . 2 (𝑋𝑉𝑋 ∈ V)
2 elex 3514 . 2 (𝑌𝑊𝑌 ∈ V)
3 brwdom2 9039 . . . . 5 (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
43adantl 484 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
5 dffo3 6870 . . . . . . . 8 (𝑓:𝑧onto𝑋 ↔ (𝑓:𝑧𝑋 ∧ ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦)))
65simprbi 499 . . . . . . 7 (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦))
7 elpwi 4550 . . . . . . . . . 10 (𝑧 ∈ 𝒫 𝑌𝑧𝑌)
8 ssrexv 4036 . . . . . . . . . 10 (𝑧𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
97, 8syl 17 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
109adantl 484 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
1110ralimdv 3180 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦) → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
126, 11syl5 34 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1312eximdv 1918 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1413rexlimdva 3286 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
154, 14sylbid 242 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
16 simpll 765 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋 ∈ V)
17 simplr 767 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑌 ∈ V)
18 eqeq1 2827 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑦)))
1918rexbidv 3299 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑦𝑌 𝑧 = (𝑓𝑦)))
20 fveq2 6672 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
2120eqeq2d 2834 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑤)))
2221cbvrexvw 3452 . . . . . . . . . . 11 (∃𝑦𝑌 𝑧 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2319, 22syl6bb 289 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤)))
2423cbvralvw 3451 . . . . . . . . 9 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2524biimpi 218 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2625adantl 484 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2726r19.21bi 3210 . . . . . 6 ((((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) ∧ 𝑧𝑋) → ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2816, 17, 27wdom2d 9046 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋* 𝑌)
2928ex 415 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3029exlimdv 1934 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3115, 30impbid 214 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
321, 2, 31syl2an 597 1 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wss 3938  𝒫 cpw 4541   class class class wbr 5068  wf 6353  ontowfo 6355  cfv 6357  * cwdom 9023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-wdom 9025
This theorem is referenced by:  brwdom3i  9049
  Copyright terms: Public domain W3C validator