MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3 Structured version   Visualization version   GIF version

Theorem brwdom3 9622
Description: Condition for weak dominance with a condition reminiscent of wdomd 9621. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
brwdom3 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Distinct variable groups:   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem brwdom3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3501 . 2 (𝑋𝑉𝑋 ∈ V)
2 elex 3501 . 2 (𝑌𝑊𝑌 ∈ V)
3 brwdom2 9613 . . . . 5 (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
43adantl 481 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
5 dffo3 7122 . . . . . . . 8 (𝑓:𝑧onto𝑋 ↔ (𝑓:𝑧𝑋 ∧ ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦)))
65simprbi 496 . . . . . . 7 (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦))
7 elpwi 4607 . . . . . . . . . 10 (𝑧 ∈ 𝒫 𝑌𝑧𝑌)
8 ssrexv 4053 . . . . . . . . . 10 (𝑧𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
97, 8syl 17 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
109adantl 481 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
1110ralimdv 3169 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦) → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
126, 11syl5 34 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1312eximdv 1917 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1413rexlimdva 3155 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
154, 14sylbid 240 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
16 simpll 767 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋 ∈ V)
17 simplr 769 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑌 ∈ V)
18 eqeq1 2741 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑦)))
1918rexbidv 3179 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑦𝑌 𝑧 = (𝑓𝑦)))
20 fveq2 6906 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
2120eqeq2d 2748 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑤)))
2221cbvrexvw 3238 . . . . . . . . . . 11 (∃𝑦𝑌 𝑧 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2319, 22bitrdi 287 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤)))
2423cbvralvw 3237 . . . . . . . . 9 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2524biimpi 216 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2625adantl 481 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2726r19.21bi 3251 . . . . . 6 ((((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) ∧ 𝑧𝑋) → ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2816, 17, 27wdom2d 9620 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋* 𝑌)
2928ex 412 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3029exlimdv 1933 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3115, 30impbid 212 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
321, 2, 31syl2an 596 1 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143  wf 6557  ontowfo 6559  cfv 6561  * cwdom 9604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-en 8986  df-dom 8987  df-sdom 8988  df-wdom 9605
This theorem is referenced by:  brwdom3i  9623
  Copyright terms: Public domain W3C validator