Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) |
2 | | elex 3440 |
. 2
⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ V) |
3 | | brwdom2 9262 |
. . . . 5
⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌∃𝑓 𝑓:𝑧–onto→𝑋)) |
4 | 3 | adantl 481 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌∃𝑓 𝑓:𝑧–onto→𝑋)) |
5 | | dffo3 6960 |
. . . . . . . 8
⊢ (𝑓:𝑧–onto→𝑋 ↔ (𝑓:𝑧⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦))) |
6 | 5 | simprbi 496 |
. . . . . . 7
⊢ (𝑓:𝑧–onto→𝑋 → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦)) |
7 | | elpwi 4539 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝒫 𝑌 → 𝑧 ⊆ 𝑌) |
8 | | ssrexv 3984 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ 𝑌 → (∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝒫 𝑌 → (∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
10 | 9 | adantl 481 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
11 | 10 | ralimdv 3103 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑧 𝑥 = (𝑓‘𝑦) → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
12 | 6, 11 | syl5 34 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (𝑓:𝑧–onto→𝑋 → ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
13 | 12 | eximdv 1921 |
. . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑓 𝑓:𝑧–onto→𝑋 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
14 | 13 | rexlimdva 3212 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑧 ∈ 𝒫 𝑌∃𝑓 𝑓:𝑧–onto→𝑋 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
15 | 4, 14 | sylbid 239 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
16 | | simpll 763 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → 𝑋 ∈ V) |
17 | | simplr 765 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → 𝑌 ∈ V) |
18 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = (𝑓‘𝑦) ↔ 𝑧 = (𝑓‘𝑦))) |
19 | 18 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) ↔ ∃𝑦 ∈ 𝑌 𝑧 = (𝑓‘𝑦))) |
20 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑓‘𝑦) = (𝑓‘𝑤)) |
21 | 20 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (𝑧 = (𝑓‘𝑦) ↔ 𝑧 = (𝑓‘𝑤))) |
22 | 21 | cbvrexvw 3373 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑌 𝑧 = (𝑓‘𝑦) ↔ ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) |
23 | 19, 22 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) ↔ ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤))) |
24 | 23 | cbvralvw 3372 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) ↔ ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) |
25 | 24 | biimpi 215 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) |
26 | 25 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) |
27 | 26 | r19.21bi 3132 |
. . . . . 6
⊢ ((((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) ∧ 𝑧 ∈ 𝑋) → ∃𝑤 ∈ 𝑌 𝑧 = (𝑓‘𝑤)) |
28 | 16, 17, 27 | wdom2d 9269 |
. . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) → 𝑋 ≼* 𝑌) |
29 | 28 | ex 412 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) → 𝑋 ≼* 𝑌)) |
30 | 29 | exlimdv 1937 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦) → 𝑋 ≼* 𝑌)) |
31 | 15, 30 | impbid 211 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |
32 | 1, 2, 31 | syl2an 595 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) |