MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3 Structured version   Visualization version   GIF version

Theorem brwdom3 9468
Description: Condition for weak dominance with a condition reminiscent of wdomd 9467. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
brwdom3 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Distinct variable groups:   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)   𝑊(𝑥,𝑦,𝑓)

Proof of Theorem brwdom3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝑋𝑉𝑋 ∈ V)
2 elex 3457 . 2 (𝑌𝑊𝑌 ∈ V)
3 brwdom2 9459 . . . . 5 (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
43adantl 481 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋))
5 dffo3 7035 . . . . . . . 8 (𝑓:𝑧onto𝑋 ↔ (𝑓:𝑧𝑋 ∧ ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦)))
65simprbi 496 . . . . . . 7 (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦))
7 elpwi 4554 . . . . . . . . . 10 (𝑧 ∈ 𝒫 𝑌𝑧𝑌)
8 ssrexv 3999 . . . . . . . . . 10 (𝑧𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
97, 8syl 17 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑌 → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
109adantl 481 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑦𝑧 𝑥 = (𝑓𝑦) → ∃𝑦𝑌 𝑥 = (𝑓𝑦)))
1110ralimdv 3146 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∀𝑥𝑋𝑦𝑧 𝑥 = (𝑓𝑦) → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
126, 11syl5 34 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (𝑓:𝑧onto𝑋 → ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1312eximdv 1918 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑧 ∈ 𝒫 𝑌) → (∃𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
1413rexlimdva 3133 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑧 ∈ 𝒫 𝑌𝑓 𝑓:𝑧onto𝑋 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
154, 14sylbid 240 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
16 simpll 766 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋 ∈ V)
17 simplr 768 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑌 ∈ V)
18 eqeq1 2735 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑦)))
1918rexbidv 3156 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑦𝑌 𝑧 = (𝑓𝑦)))
20 fveq2 6822 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
2120eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧 = (𝑓𝑦) ↔ 𝑧 = (𝑓𝑤)))
2221cbvrexvw 3211 . . . . . . . . . . 11 (∃𝑦𝑌 𝑧 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2319, 22bitrdi 287 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∃𝑤𝑌 𝑧 = (𝑓𝑤)))
2423cbvralvw 3210 . . . . . . . . 9 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) ↔ ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2524biimpi 216 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2625adantl 481 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → ∀𝑧𝑋𝑤𝑌 𝑧 = (𝑓𝑤))
2726r19.21bi 3224 . . . . . 6 ((((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) ∧ 𝑧𝑋) → ∃𝑤𝑌 𝑧 = (𝑓𝑤))
2816, 17, 27wdom2d 9466 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)) → 𝑋* 𝑌)
2928ex 412 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∀𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3029exlimdv 1934 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦) → 𝑋* 𝑌))
3115, 30impbid 212 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
321, 2, 31syl2an 596 1 ((𝑋𝑉𝑌𝑊) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  𝒫 cpw 4547   class class class wbr 5089  wf 6477  ontowfo 6479  cfv 6481  * cwdom 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-en 8870  df-dom 8871  df-sdom 8872  df-wdom 9451
This theorem is referenced by:  brwdom3i  9469
  Copyright terms: Public domain W3C validator