MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat Structured version   Visualization version   GIF version

Theorem ragflat 28637
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat.2 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragflat (𝜑𝐵 = 𝐶)

Proof of Theorem ragflat
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 israg.p . . 3 𝑃 = (Base‘𝐺)
3 israg.d . . 3 = (dist‘𝐺)
4 israg.i . . 3 𝐼 = (Itv‘𝐺)
5 israg.l . . 3 𝐿 = (LineG‘𝐺)
6 israg.s . . 3 𝑆 = (pInvG‘𝐺)
7 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
87adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
9 israg.a . . . 4 (𝜑𝐴𝑃)
109adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
11 israg.b . . . 4 (𝜑𝐵𝑃)
1211adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
13 israg.c . . . 4 (𝜑𝐶𝑃)
1413adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
15 eqid 2730 . . . 4 (𝑆𝐶) = (𝑆𝐶)
162, 3, 4, 5, 6, 8, 14, 15, 10mircl 28594 . . 3 ((𝜑𝐵𝐶) → ((𝑆𝐶)‘𝐴) ∈ 𝑃)
17 ragflat.1 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1817adantr 480 . . 3 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
192, 3, 4, 5, 6, 8, 14, 15, 10mircgr 28590 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 ((𝑆𝐶)‘𝐴)) = (𝐶 𝐴))
202, 3, 4, 8, 14, 16, 14, 10, 19tgcgrcomlr 28413 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (𝐴 𝐶))
212, 3, 4, 5, 6, 8, 10, 12, 14israg 28630 . . . . . 6 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
2218, 21mpbid 232 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
23 eqid 2730 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
242, 3, 4, 5, 6, 8, 12, 23, 14mircl 28594 . . . . . 6 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
25 ragflat.2 . . . . . . . . . 10 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
2625adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
272, 3, 4, 5, 6, 8, 10, 14, 12, 26ragcom 28631 . . . . . . . 8 ((𝜑𝐵𝐶) → ⟨“𝐵𝐶𝐴”⟩ ∈ (∟G‘𝐺))
28 simpr 484 . . . . . . . 8 ((𝜑𝐵𝐶) → 𝐵𝐶)
292, 3, 4, 5, 6, 8, 12, 23, 14mirbtwn 28591 . . . . . . . . . 10 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
302, 3, 4, 8, 24, 12, 14, 29tgbtwncom 28421 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
312, 5, 4, 8, 14, 24, 12, 30btwncolg1 28488 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆𝐵)‘𝐶)))
322, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31ragcol 28632 . . . . . . 7 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺))
332, 3, 4, 5, 6, 8, 24, 14, 10israg 28630 . . . . . . 7 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴))))
3432, 33mpbid 232 . . . . . 6 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴)))
352, 3, 4, 8, 24, 10, 24, 16, 34tgcgrcomlr 28413 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
3620, 22, 353eqtrd 2769 . . . 4 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
372, 3, 4, 5, 6, 8, 16, 12, 14israg 28630 . . . 4 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶))))
3836, 37mpbird 257 . . 3 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
392, 3, 4, 5, 6, 8, 14, 15, 10mirbtwn 28591 . . . 4 ((𝜑𝐵𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐴)𝐼𝐴))
402, 3, 4, 8, 16, 14, 10, 39tgbtwncom 28421 . . 3 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆𝐶)‘𝐴)))
412, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40ragflat2 28636 . 2 ((𝜑𝐵𝐶) → 𝐵 = 𝐶)
421, 41pm2.61dane 3013 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cfv 6513  (class class class)co 7389  ⟨“cs3 14814  Basecbs 17185  distcds 17235  TarskiGcstrkg 28360  Itvcitv 28366  LineGclng 28367  pInvGcmir 28585  ∟Gcrag 28626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-s2 14820  df-s3 14821  df-trkgc 28381  df-trkgb 28382  df-trkgcb 28383  df-trkg 28386  df-cgrg 28444  df-mir 28586  df-rag 28627
This theorem is referenced by:  ragtriva  28638  footexALT  28651  footexlem2  28653  foot  28655
  Copyright terms: Public domain W3C validator