MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat Structured version   Visualization version   GIF version

Theorem ragflat 26498
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat.2 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragflat (𝜑𝐵 = 𝐶)

Proof of Theorem ragflat
StepHypRef Expression
1 simpr 488 . 2 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 israg.p . . 3 𝑃 = (Base‘𝐺)
3 israg.d . . 3 = (dist‘𝐺)
4 israg.i . . 3 𝐼 = (Itv‘𝐺)
5 israg.l . . 3 𝐿 = (LineG‘𝐺)
6 israg.s . . 3 𝑆 = (pInvG‘𝐺)
7 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
87adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
9 israg.a . . . 4 (𝜑𝐴𝑃)
109adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
11 israg.b . . . 4 (𝜑𝐵𝑃)
1211adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
13 israg.c . . . 4 (𝜑𝐶𝑃)
1413adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
15 eqid 2798 . . . 4 (𝑆𝐶) = (𝑆𝐶)
162, 3, 4, 5, 6, 8, 14, 15, 10mircl 26455 . . 3 ((𝜑𝐵𝐶) → ((𝑆𝐶)‘𝐴) ∈ 𝑃)
17 ragflat.1 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1817adantr 484 . . 3 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
192, 3, 4, 5, 6, 8, 14, 15, 10mircgr 26451 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 ((𝑆𝐶)‘𝐴)) = (𝐶 𝐴))
202, 3, 4, 8, 14, 16, 14, 10, 19tgcgrcomlr 26274 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (𝐴 𝐶))
212, 3, 4, 5, 6, 8, 10, 12, 14israg 26491 . . . . . 6 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
2218, 21mpbid 235 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
23 eqid 2798 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
242, 3, 4, 5, 6, 8, 12, 23, 14mircl 26455 . . . . . 6 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
25 ragflat.2 . . . . . . . . . 10 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
2625adantr 484 . . . . . . . . 9 ((𝜑𝐵𝐶) → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
272, 3, 4, 5, 6, 8, 10, 14, 12, 26ragcom 26492 . . . . . . . 8 ((𝜑𝐵𝐶) → ⟨“𝐵𝐶𝐴”⟩ ∈ (∟G‘𝐺))
28 simpr 488 . . . . . . . 8 ((𝜑𝐵𝐶) → 𝐵𝐶)
292, 3, 4, 5, 6, 8, 12, 23, 14mirbtwn 26452 . . . . . . . . . 10 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
302, 3, 4, 8, 24, 12, 14, 29tgbtwncom 26282 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
312, 5, 4, 8, 14, 24, 12, 30btwncolg1 26349 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆𝐵)‘𝐶)))
322, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31ragcol 26493 . . . . . . 7 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺))
332, 3, 4, 5, 6, 8, 24, 14, 10israg 26491 . . . . . . 7 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴))))
3432, 33mpbid 235 . . . . . 6 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴)))
352, 3, 4, 8, 24, 10, 24, 16, 34tgcgrcomlr 26274 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
3620, 22, 353eqtrd 2837 . . . 4 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
372, 3, 4, 5, 6, 8, 16, 12, 14israg 26491 . . . 4 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶))))
3836, 37mpbird 260 . . 3 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
392, 3, 4, 5, 6, 8, 14, 15, 10mirbtwn 26452 . . . 4 ((𝜑𝐵𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐴)𝐼𝐴))
402, 3, 4, 8, 16, 14, 10, 39tgbtwncom 26282 . . 3 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆𝐶)‘𝐴)))
412, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40ragflat2 26497 . 2 ((𝜑𝐵𝐶) → 𝐵 = 𝐶)
421, 41pm2.61dane 3074 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446  ∟Gcrag 26487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-mir 26447  df-rag 26488
This theorem is referenced by:  ragtriva  26499  footexALT  26512  footexlem2  26514  foot  26516
  Copyright terms: Public domain W3C validator