Step | Hyp | Ref
| Expression |
1 | | simpr 483 |
. 2
β’ ((π β§ π΅ = πΆ) β π΅ = πΆ) |
2 | | israg.p |
. . 3
β’ π = (BaseβπΊ) |
3 | | israg.d |
. . 3
β’ β =
(distβπΊ) |
4 | | israg.i |
. . 3
β’ πΌ = (ItvβπΊ) |
5 | | israg.l |
. . 3
β’ πΏ = (LineGβπΊ) |
6 | | israg.s |
. . 3
β’ π = (pInvGβπΊ) |
7 | | israg.g |
. . . 4
β’ (π β πΊ β TarskiG) |
8 | 7 | adantr 479 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΊ β TarskiG) |
9 | | israg.a |
. . . 4
β’ (π β π΄ β π) |
10 | 9 | adantr 479 |
. . 3
β’ ((π β§ π΅ β πΆ) β π΄ β π) |
11 | | israg.b |
. . . 4
β’ (π β π΅ β π) |
12 | 11 | adantr 479 |
. . 3
β’ ((π β§ π΅ β πΆ) β π΅ β π) |
13 | | israg.c |
. . . 4
β’ (π β πΆ β π) |
14 | 13 | adantr 479 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΆ β π) |
15 | | eqid 2730 |
. . . 4
β’ (πβπΆ) = (πβπΆ) |
16 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircl 28179 |
. . 3
β’ ((π β§ π΅ β πΆ) β ((πβπΆ)βπ΄) β π) |
17 | | ragflat.1 |
. . . 4
β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
18 | 17 | adantr 479 |
. . 3
β’ ((π β§ π΅ β πΆ) β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
19 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircgr 28175 |
. . . . . 6
β’ ((π β§ π΅ β πΆ) β (πΆ β ((πβπΆ)βπ΄)) = (πΆ β π΄)) |
20 | 2, 3, 4, 8, 14, 16, 14, 10, 19 | tgcgrcomlr 27998 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (((πβπΆ)βπ΄) β πΆ) = (π΄ β πΆ)) |
21 | 2, 3, 4, 5, 6, 8, 10, 12, 14 | israg 28215 |
. . . . . 6
β’ ((π β§ π΅ β πΆ) β (β¨βπ΄π΅πΆββ© β (βGβπΊ) β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ)))) |
22 | 18, 21 | mpbid 231 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (π΄ β πΆ) = (π΄ β ((πβπ΅)βπΆ))) |
23 | | eqid 2730 |
. . . . . . 7
β’ (πβπ΅) = (πβπ΅) |
24 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mircl 28179 |
. . . . . 6
β’ ((π β§ π΅ β πΆ) β ((πβπ΅)βπΆ) β π) |
25 | | ragflat.2 |
. . . . . . . . . 10
β’ (π β β¨βπ΄πΆπ΅ββ© β (βGβπΊ)) |
26 | 25 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π΅ β πΆ) β β¨βπ΄πΆπ΅ββ© β (βGβπΊ)) |
27 | 2, 3, 4, 5, 6, 8, 10, 14, 12, 26 | ragcom 28216 |
. . . . . . . 8
β’ ((π β§ π΅ β πΆ) β β¨βπ΅πΆπ΄ββ© β (βGβπΊ)) |
28 | | simpr 483 |
. . . . . . . 8
β’ ((π β§ π΅ β πΆ) β π΅ β πΆ) |
29 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mirbtwn 28176 |
. . . . . . . . . 10
β’ ((π β§ π΅ β πΆ) β π΅ β (((πβπ΅)βπΆ)πΌπΆ)) |
30 | 2, 3, 4, 8, 24, 12, 14, 29 | tgbtwncom 28006 |
. . . . . . . . 9
β’ ((π β§ π΅ β πΆ) β π΅ β (πΆπΌ((πβπ΅)βπΆ))) |
31 | 2, 5, 4, 8, 14, 24, 12, 30 | btwncolg1 28073 |
. . . . . . . 8
β’ ((π β§ π΅ β πΆ) β (π΅ β (πΆπΏ((πβπ΅)βπΆ)) β¨ πΆ = ((πβπ΅)βπΆ))) |
32 | 2, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31 | ragcol 28217 |
. . . . . . 7
β’ ((π β§ π΅ β πΆ) β β¨β((πβπ΅)βπΆ)πΆπ΄ββ© β (βGβπΊ)) |
33 | 2, 3, 4, 5, 6, 8, 24, 14, 10 | israg 28215 |
. . . . . . 7
β’ ((π β§ π΅ β πΆ) β (β¨β((πβπ΅)βπΆ)πΆπ΄ββ© β (βGβπΊ) β (((πβπ΅)βπΆ) β π΄) = (((πβπ΅)βπΆ) β ((πβπΆ)βπ΄)))) |
34 | 32, 33 | mpbid 231 |
. . . . . 6
β’ ((π β§ π΅ β πΆ) β (((πβπ΅)βπΆ) β π΄) = (((πβπ΅)βπΆ) β ((πβπΆ)βπ΄))) |
35 | 2, 3, 4, 8, 24, 10, 24, 16, 34 | tgcgrcomlr 27998 |
. . . . 5
β’ ((π β§ π΅ β πΆ) β (π΄ β ((πβπ΅)βπΆ)) = (((πβπΆ)βπ΄) β ((πβπ΅)βπΆ))) |
36 | 20, 22, 35 | 3eqtrd 2774 |
. . . 4
β’ ((π β§ π΅ β πΆ) β (((πβπΆ)βπ΄) β πΆ) = (((πβπΆ)βπ΄) β ((πβπ΅)βπΆ))) |
37 | 2, 3, 4, 5, 6, 8, 16, 12, 14 | israg 28215 |
. . . 4
β’ ((π β§ π΅ β πΆ) β (β¨β((πβπΆ)βπ΄)π΅πΆββ© β (βGβπΊ) β (((πβπΆ)βπ΄) β πΆ) = (((πβπΆ)βπ΄) β ((πβπ΅)βπΆ)))) |
38 | 36, 37 | mpbird 256 |
. . 3
β’ ((π β§ π΅ β πΆ) β β¨β((πβπΆ)βπ΄)π΅πΆββ© β (βGβπΊ)) |
39 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mirbtwn 28176 |
. . . 4
β’ ((π β§ π΅ β πΆ) β πΆ β (((πβπΆ)βπ΄)πΌπ΄)) |
40 | 2, 3, 4, 8, 16, 14, 10, 39 | tgbtwncom 28006 |
. . 3
β’ ((π β§ π΅ β πΆ) β πΆ β (π΄πΌ((πβπΆ)βπ΄))) |
41 | 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40 | ragflat2 28221 |
. 2
β’ ((π β§ π΅ β πΆ) β π΅ = πΆ) |
42 | 1, 41 | pm2.61dane 3027 |
1
β’ (π β π΅ = πΆ) |