![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragflat | Structured version Visualization version GIF version |
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragflat.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragflat.2 | ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
Ref | Expression |
---|---|
ragflat | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
2 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | israg.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | israg.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
9 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
11 | israg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
13 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
15 | eqid 2737 | . . . 4 ⊢ (𝑆‘𝐶) = (𝑆‘𝐶) | |
16 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircl 28695 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐴) ∈ 𝑃) |
17 | ragflat.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
19 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircgr 28691 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐴)) = (𝐶 − 𝐴)) |
20 | 2, 3, 4, 8, 14, 16, 14, 10, 19 | tgcgrcomlr 28514 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (𝐴 − 𝐶)) |
21 | 2, 3, 4, 5, 6, 8, 10, 12, 14 | israg 28731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
22 | 18, 21 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
23 | eqid 2737 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
24 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mircl 28695 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
25 | ragflat.2 | . . . . . . . . . 10 ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) | |
26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
27 | 2, 3, 4, 5, 6, 8, 10, 14, 12, 26 | ragcom 28732 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐵𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
28 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
29 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mirbtwn 28692 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (((𝑆‘𝐵)‘𝐶)𝐼𝐶)) |
30 | 2, 3, 4, 8, 24, 12, 14, 29 | tgbtwncom 28522 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐵)‘𝐶))) |
31 | 2, 5, 4, 8, 14, 24, 12, 30 | btwncolg1 28589 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆‘𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆‘𝐵)‘𝐶))) |
32 | 2, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31 | ragcol 28733 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
33 | 2, 3, 4, 5, 6, 8, 24, 14, 10 | israg 28731 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴)))) |
34 | 32, 33 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴))) |
35 | 2, 3, 4, 8, 24, 10, 24, 16, 34 | tgcgrcomlr 28514 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − ((𝑆‘𝐵)‘𝐶)) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
36 | 20, 22, 35 | 3eqtrd 2781 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
37 | 2, 3, 4, 5, 6, 8, 16, 12, 14 | israg 28731 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶)))) |
38 | 36, 37 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
39 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mirbtwn 28692 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (((𝑆‘𝐶)‘𝐴)𝐼𝐴)) |
40 | 2, 3, 4, 8, 16, 14, 10, 39 | tgbtwncom 28522 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆‘𝐶)‘𝐴))) |
41 | 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40 | ragflat2 28737 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 = 𝐶) |
42 | 1, 41 | pm2.61dane 3029 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6569 (class class class)co 7438 〈“cs3 14887 Basecbs 17254 distcds 17316 TarskiGcstrkg 28461 Itvcitv 28467 LineGclng 28468 pInvGcmir 28686 ∟Gcrag 28727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-xnn0 12607 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-s2 14893 df-s3 14894 df-trkgc 28482 df-trkgb 28483 df-trkgcb 28484 df-trkg 28487 df-cgrg 28545 df-mir 28687 df-rag 28728 |
This theorem is referenced by: ragtriva 28739 footexALT 28752 footexlem2 28754 foot 28756 |
Copyright terms: Public domain | W3C validator |