| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ragflat | Structured version Visualization version GIF version | ||
| Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
| Ref | Expression |
|---|---|
| israg.p | ⊢ 𝑃 = (Base‘𝐺) |
| israg.d | ⊢ − = (dist‘𝐺) |
| israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
| israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| ragflat.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| ragflat.2 | ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
| Ref | Expression |
|---|---|
| ragflat | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 2 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | israg.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | israg.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
| 9 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
| 11 | israg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
| 13 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
| 15 | eqid 2730 | . . . 4 ⊢ (𝑆‘𝐶) = (𝑆‘𝐶) | |
| 16 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircl 28594 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐴) ∈ 𝑃) |
| 17 | ragflat.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 19 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircgr 28590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐴)) = (𝐶 − 𝐴)) |
| 20 | 2, 3, 4, 8, 14, 16, 14, 10, 19 | tgcgrcomlr 28413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (𝐴 − 𝐶)) |
| 21 | 2, 3, 4, 5, 6, 8, 10, 12, 14 | israg 28630 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
| 22 | 18, 21 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
| 23 | eqid 2730 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
| 24 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mircl 28594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
| 25 | ragflat.2 | . . . . . . . . . 10 ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) | |
| 26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
| 27 | 2, 3, 4, 5, 6, 8, 10, 14, 12, 26 | ragcom 28631 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐵𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
| 28 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
| 29 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mirbtwn 28591 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (((𝑆‘𝐵)‘𝐶)𝐼𝐶)) |
| 30 | 2, 3, 4, 8, 24, 12, 14, 29 | tgbtwncom 28421 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐵)‘𝐶))) |
| 31 | 2, 5, 4, 8, 14, 24, 12, 30 | btwncolg1 28488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆‘𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆‘𝐵)‘𝐶))) |
| 32 | 2, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31 | ragcol 28632 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
| 33 | 2, 3, 4, 5, 6, 8, 24, 14, 10 | israg 28630 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴)))) |
| 34 | 32, 33 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴))) |
| 35 | 2, 3, 4, 8, 24, 10, 24, 16, 34 | tgcgrcomlr 28413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − ((𝑆‘𝐵)‘𝐶)) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
| 36 | 20, 22, 35 | 3eqtrd 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
| 37 | 2, 3, 4, 5, 6, 8, 16, 12, 14 | israg 28630 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶)))) |
| 38 | 36, 37 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 39 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mirbtwn 28591 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (((𝑆‘𝐶)‘𝐴)𝐼𝐴)) |
| 40 | 2, 3, 4, 8, 16, 14, 10, 39 | tgbtwncom 28421 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆‘𝐶)‘𝐴))) |
| 41 | 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40 | ragflat2 28636 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 = 𝐶) |
| 42 | 1, 41 | pm2.61dane 3013 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 (class class class)co 7389 〈“cs3 14814 Basecbs 17185 distcds 17235 TarskiGcstrkg 28360 Itvcitv 28366 LineGclng 28367 pInvGcmir 28585 ∟Gcrag 28626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-oadd 8440 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-hash 14302 df-word 14485 df-concat 14542 df-s1 14567 df-s2 14820 df-s3 14821 df-trkgc 28381 df-trkgb 28382 df-trkgcb 28383 df-trkg 28386 df-cgrg 28444 df-mir 28586 df-rag 28627 |
| This theorem is referenced by: ragtriva 28638 footexALT 28651 footexlem2 28653 foot 28655 |
| Copyright terms: Public domain | W3C validator |