Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ragflat | Structured version Visualization version GIF version |
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragflat.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragflat.2 | ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
Ref | Expression |
---|---|
ragflat | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
2 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | israg.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | israg.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
9 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
11 | israg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
13 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
15 | eqid 2738 | . . . 4 ⊢ (𝑆‘𝐶) = (𝑆‘𝐶) | |
16 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircl 26926 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐴) ∈ 𝑃) |
17 | ragflat.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
19 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircgr 26922 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐴)) = (𝐶 − 𝐴)) |
20 | 2, 3, 4, 8, 14, 16, 14, 10, 19 | tgcgrcomlr 26745 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (𝐴 − 𝐶)) |
21 | 2, 3, 4, 5, 6, 8, 10, 12, 14 | israg 26962 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
22 | 18, 21 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
23 | eqid 2738 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
24 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mircl 26926 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
25 | ragflat.2 | . . . . . . . . . 10 ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) | |
26 | 25 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
27 | 2, 3, 4, 5, 6, 8, 10, 14, 12, 26 | ragcom 26963 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐵𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
28 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
29 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mirbtwn 26923 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (((𝑆‘𝐵)‘𝐶)𝐼𝐶)) |
30 | 2, 3, 4, 8, 24, 12, 14, 29 | tgbtwncom 26753 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐵)‘𝐶))) |
31 | 2, 5, 4, 8, 14, 24, 12, 30 | btwncolg1 26820 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆‘𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆‘𝐵)‘𝐶))) |
32 | 2, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31 | ragcol 26964 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
33 | 2, 3, 4, 5, 6, 8, 24, 14, 10 | israg 26962 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴)))) |
34 | 32, 33 | mpbid 231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴))) |
35 | 2, 3, 4, 8, 24, 10, 24, 16, 34 | tgcgrcomlr 26745 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − ((𝑆‘𝐵)‘𝐶)) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
36 | 20, 22, 35 | 3eqtrd 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
37 | 2, 3, 4, 5, 6, 8, 16, 12, 14 | israg 26962 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶)))) |
38 | 36, 37 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
39 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mirbtwn 26923 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (((𝑆‘𝐶)‘𝐴)𝐼𝐴)) |
40 | 2, 3, 4, 8, 16, 14, 10, 39 | tgbtwncom 26753 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆‘𝐶)‘𝐴))) |
41 | 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40 | ragflat2 26968 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 = 𝐶) |
42 | 1, 41 | pm2.61dane 3031 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 〈“cs3 14483 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 pInvGcmir 26917 ∟Gcrag 26958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 df-mir 26918 df-rag 26959 |
This theorem is referenced by: ragtriva 26970 footexALT 26983 footexlem2 26985 foot 26987 |
Copyright terms: Public domain | W3C validator |