MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat Structured version   Visualization version   GIF version

Theorem ragflat 28649
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat.2 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragflat (𝜑𝐵 = 𝐶)

Proof of Theorem ragflat
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 israg.p . . 3 𝑃 = (Base‘𝐺)
3 israg.d . . 3 = (dist‘𝐺)
4 israg.i . . 3 𝐼 = (Itv‘𝐺)
5 israg.l . . 3 𝐿 = (LineG‘𝐺)
6 israg.s . . 3 𝑆 = (pInvG‘𝐺)
7 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
87adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
9 israg.a . . . 4 (𝜑𝐴𝑃)
109adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
11 israg.b . . . 4 (𝜑𝐵𝑃)
1211adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
13 israg.c . . . 4 (𝜑𝐶𝑃)
1413adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
15 eqid 2729 . . . 4 (𝑆𝐶) = (𝑆𝐶)
162, 3, 4, 5, 6, 8, 14, 15, 10mircl 28606 . . 3 ((𝜑𝐵𝐶) → ((𝑆𝐶)‘𝐴) ∈ 𝑃)
17 ragflat.1 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1817adantr 480 . . 3 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
192, 3, 4, 5, 6, 8, 14, 15, 10mircgr 28602 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 ((𝑆𝐶)‘𝐴)) = (𝐶 𝐴))
202, 3, 4, 8, 14, 16, 14, 10, 19tgcgrcomlr 28425 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (𝐴 𝐶))
212, 3, 4, 5, 6, 8, 10, 12, 14israg 28642 . . . . . 6 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
2218, 21mpbid 232 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
23 eqid 2729 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
242, 3, 4, 5, 6, 8, 12, 23, 14mircl 28606 . . . . . 6 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
25 ragflat.2 . . . . . . . . . 10 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
2625adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
272, 3, 4, 5, 6, 8, 10, 14, 12, 26ragcom 28643 . . . . . . . 8 ((𝜑𝐵𝐶) → ⟨“𝐵𝐶𝐴”⟩ ∈ (∟G‘𝐺))
28 simpr 484 . . . . . . . 8 ((𝜑𝐵𝐶) → 𝐵𝐶)
292, 3, 4, 5, 6, 8, 12, 23, 14mirbtwn 28603 . . . . . . . . . 10 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
302, 3, 4, 8, 24, 12, 14, 29tgbtwncom 28433 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
312, 5, 4, 8, 14, 24, 12, 30btwncolg1 28500 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆𝐵)‘𝐶)))
322, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31ragcol 28644 . . . . . . 7 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺))
332, 3, 4, 5, 6, 8, 24, 14, 10israg 28642 . . . . . . 7 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴))))
3432, 33mpbid 232 . . . . . 6 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴)))
352, 3, 4, 8, 24, 10, 24, 16, 34tgcgrcomlr 28425 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
3620, 22, 353eqtrd 2768 . . . 4 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
372, 3, 4, 5, 6, 8, 16, 12, 14israg 28642 . . . 4 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶))))
3836, 37mpbird 257 . . 3 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
392, 3, 4, 5, 6, 8, 14, 15, 10mirbtwn 28603 . . . 4 ((𝜑𝐵𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐴)𝐼𝐴))
402, 3, 4, 8, 16, 14, 10, 39tgbtwncom 28433 . . 3 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆𝐶)‘𝐴)))
412, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40ragflat2 28648 . 2 ((𝜑𝐵𝐶) → 𝐵 = 𝐶)
421, 41pm2.61dane 3012 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  ⟨“cs3 14749  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379  pInvGcmir 28597  ∟Gcrag 28638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456  df-mir 28598  df-rag 28639
This theorem is referenced by:  ragtriva  28650  footexALT  28663  footexlem2  28665  foot  28667
  Copyright terms: Public domain W3C validator