![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ragflat | Structured version Visualization version GIF version |
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ragflat.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
ragflat.2 | ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
Ref | Expression |
---|---|
ragflat | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
2 | israg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | israg.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | israg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | israg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | israg.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | israg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | 7 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
9 | israg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | 9 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
11 | israg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 11 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
13 | israg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | 13 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
15 | eqid 2778 | . . . 4 ⊢ (𝑆‘𝐶) = (𝑆‘𝐶) | |
16 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircl 26029 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐴) ∈ 𝑃) |
17 | ragflat.1 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
18 | 17 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
19 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mircgr 26025 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐴)) = (𝐶 − 𝐴)) |
20 | 2, 3, 4, 8, 14, 16, 14, 10, 19 | tgcgrcomlr 25848 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (𝐴 − 𝐶)) |
21 | 2, 3, 4, 5, 6, 8, 10, 12, 14 | israg 26065 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
22 | 18, 21 | mpbid 224 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
23 | eqid 2778 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
24 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mircl 26029 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
25 | ragflat.2 | . . . . . . . . . 10 ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) | |
26 | 25 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) |
27 | 2, 3, 4, 5, 6, 8, 10, 14, 12, 26 | ragcom 26066 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐵𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
28 | simpr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
29 | 2, 3, 4, 5, 6, 8, 12, 23, 14 | mirbtwn 26026 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (((𝑆‘𝐵)‘𝐶)𝐼𝐶)) |
30 | 2, 3, 4, 8, 24, 12, 14, 29 | tgbtwncom 25856 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐵)‘𝐶))) |
31 | 2, 5, 4, 8, 14, 24, 12, 30 | btwncolg1 25923 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆‘𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆‘𝐵)‘𝐶))) |
32 | 2, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31 | ragcol 26067 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺)) |
33 | 2, 3, 4, 5, 6, 8, 24, 14, 10 | israg 26065 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐵)‘𝐶)𝐶𝐴”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴)))) |
34 | 32, 33 | mpbid 224 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐵)‘𝐶) − ((𝑆‘𝐶)‘𝐴))) |
35 | 2, 3, 4, 8, 24, 10, 24, 16, 34 | tgcgrcomlr 25848 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − ((𝑆‘𝐵)‘𝐶)) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
36 | 20, 22, 35 | 3eqtrd 2818 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶))) |
37 | 2, 3, 4, 5, 6, 8, 16, 12, 14 | israg 26065 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (((𝑆‘𝐶)‘𝐴) − 𝐶) = (((𝑆‘𝐶)‘𝐴) − ((𝑆‘𝐵)‘𝐶)))) |
38 | 36, 37 | mpbird 249 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“((𝑆‘𝐶)‘𝐴)𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
39 | 2, 3, 4, 5, 6, 8, 14, 15, 10 | mirbtwn 26026 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (((𝑆‘𝐶)‘𝐴)𝐼𝐴)) |
40 | 2, 3, 4, 8, 16, 14, 10, 39 | tgbtwncom 25856 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆‘𝐶)‘𝐴))) |
41 | 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40 | ragflat2 26071 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 = 𝐶) |
42 | 1, 41 | pm2.61dane 3057 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ‘cfv 6137 (class class class)co 6924 〈“cs3 13999 Basecbs 16266 distcds 16358 TarskiGcstrkg 25798 Itvcitv 25804 LineGclng 25805 pInvGcmir 26020 ∟Gcrag 26061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-xnn0 11720 df-z 11734 df-uz 11998 df-fz 12649 df-fzo 12790 df-hash 13442 df-word 13606 df-concat 13667 df-s1 13692 df-s2 14005 df-s3 14006 df-trkgc 25816 df-trkgb 25817 df-trkgcb 25818 df-trkg 25821 df-cgrg 25879 df-mir 26021 df-rag 26062 |
This theorem is referenced by: ragtriva 26073 footex 26086 foot 26087 |
Copyright terms: Public domain | W3C validator |