Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconnln3 Structured version   Visualization version   GIF version

Theorem tgbtwnconnln3 26378
 Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn3.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn3.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
tgbtwnconnln3.l 𝐿 = (LineG‘𝐺)
Assertion
Ref Expression
tgbtwnconnln3 (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))

Proof of Theorem tgbtwnconnln3
StepHypRef Expression
1 tgbtwnconn.p . . 3 𝑃 = (Base‘𝐺)
2 tgbtwnconnln3.l . . 3 𝐿 = (LineG‘𝐺)
3 tgbtwnconn.i . . 3 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.a . . . 4 (𝜑𝐴𝑃)
76adantr 484 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
8 tgbtwnconn.c . . . 4 (𝜑𝐶𝑃)
98adantr 484 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
10 tgbtwnconn.b . . . 4 (𝜑𝐵𝑃)
1110adantr 484 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
12 simpr 488 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
131, 2, 3, 5, 7, 9, 11, 12btwncolg1 26355 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
144adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
156adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
168adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
1710adantr 484 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
18 simpr 488 . . 3 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
191, 2, 3, 14, 15, 16, 17, 18btwncolg3 26357 . 2 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
20 tgbtwnconn.d . . 3 (𝜑𝐷𝑃)
21 tgbtwnconn3.1 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
22 tgbtwnconn3.2 . . 3 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
231, 3, 4, 6, 10, 8, 20, 21, 22tgbtwnconn3 26377 . 2 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
2413, 19, 23mpjaodan 956 1 (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115  ‘cfv 6344  (class class class)co 7150  Basecbs 16486  TarskiGcstrkg 26230  Itvcitv 26236  LineGclng 26237 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-pm 8406  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-dju 9328  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-n0 11898  df-xnn0 11968  df-z 11982  df-uz 12244  df-fz 12898  df-fzo 13041  df-hash 13699  df-word 13870  df-concat 13926  df-s1 13953  df-s2 14213  df-s3 14214  df-trkgc 26248  df-trkgb 26249  df-trkgcb 26250  df-trkg 26253  df-cgrg 26311 This theorem is referenced by:  tglineeltr  26431
 Copyright terms: Public domain W3C validator