MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov2 Structured version   Visualization version   GIF version

Theorem legov2 25898
Description: An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   (𝑥)

Proof of Theorem legov2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.l . . 3 = (≤G‘𝐺)
5 legval.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 legov.a . . 3 (𝜑𝐴𝑃)
7 legov.b . . 3 (𝜑𝐵𝑃)
8 legov.c . . 3 (𝜑𝐶𝑃)
9 legov.d . . 3 (𝜑𝐷𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9legov 25897 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
11 eqid 2825 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
125ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐺 ∈ TarskiG)
138ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
14 simplr 787 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧𝑃)
159ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
16 eqid 2825 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
176ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐴𝑃)
187ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐵𝑃)
19 simprl 789 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧 ∈ (𝐶𝐼𝐷))
201, 11, 3, 12, 13, 15, 14, 19btwncolg1 25867 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝑧 ∈ (𝐶(LineG‘𝐺)𝐷) ∨ 𝐶 = 𝐷))
21 simprr 791 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐴 𝐵) = (𝐶 𝑧))
2221eqcomd 2831 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝑧) = (𝐴 𝐵))
231, 11, 3, 12, 13, 14, 15, 16, 17, 18, 2, 20, 22lnext 25879 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
2412ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
2513ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐶𝑃)
2614ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧𝑃)
2715ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐷𝑃)
2817ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐴𝑃)
2918ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵𝑃)
30 simplr 787 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑥𝑃)
31 simpr 479 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
32 simpllr 795 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
3332simpld 490 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧 ∈ (𝐶𝐼𝐷))
341, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33tgbtwnxfr 25842 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵 ∈ (𝐴𝐼𝑥))
351, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31trgcgrcom 25840 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
361, 2, 3, 16, 24, 28, 29, 30, 25, 26, 27, 35cgr3simp3 25834 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑥 𝐴) = (𝐷 𝐶))
371, 2, 3, 24, 30, 28, 27, 25, 36tgcgrcomlr 25792 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐴 𝑥) = (𝐶 𝐷))
3834, 37jca 509 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
3938ex 403 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) → (⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4039reximdva 3225 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4123, 40mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
4241adantllr 712 . . . 4 ((((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
43 simpr 479 . . . . 5 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
44 eleq1 2894 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝐶𝐼𝐷) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
45 oveq2 6913 . . . . . . . 8 (𝑦 = 𝑧 → (𝐶 𝑦) = (𝐶 𝑧))
4645eqeq2d 2835 . . . . . . 7 (𝑦 = 𝑧 → ((𝐴 𝐵) = (𝐶 𝑦) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
4744, 46anbi12d 626 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
4847cbvrexv 3384 . . . . 5 (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
4943, 48sylib 210 . . . 4 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5042, 49r19.29a 3288 . . 3 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
515ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
526ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐴𝑃)
53 simplr 787 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝑧𝑃)
547ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵𝑃)
558ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐶𝑃)
569ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐷𝑃)
57 simprl 789 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝑧))
581, 11, 3, 51, 52, 54, 53, 57btwncolg3 25869 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝑧 ∈ (𝐴(LineG‘𝐺)𝐵) ∨ 𝐴 = 𝐵))
59 simprr 791 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝐴 𝑧) = (𝐶 𝐷))
601, 11, 3, 51, 52, 53, 54, 16, 55, 56, 2, 58, 59lnext 25879 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
6151ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
6252ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐴𝑃)
6354ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵𝑃)
6453ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑧𝑃)
6555ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐶𝑃)
66 simplr 787 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦𝑃)
6756ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐷𝑃)
68 simpr 479 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
691, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3swap23 25836 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝐵𝑧”⟩(cgrG‘𝐺)⟨“𝐶𝑦𝐷”⟩)
70 simpllr 795 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
7170simpld 490 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵 ∈ (𝐴𝐼𝑧))
721, 2, 3, 16, 61, 62, 63, 64, 65, 66, 67, 69, 71tgbtwnxfr 25842 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦 ∈ (𝐶𝐼𝐷))
731, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3simp3 25834 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 𝐴) = (𝑦 𝐶))
741, 2, 3, 61, 63, 62, 66, 65, 73tgcgrcomlr 25792 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐴 𝐵) = (𝐶 𝑦))
7572, 74jca 509 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7675ex 403 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) → (⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7776reximdva 3225 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7860, 77mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7978adantllr 712 . . . 4 ((((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) ∧ 𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
80 simpr 479 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
81 oveq2 6913 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴𝐼𝑥) = (𝐴𝐼𝑧))
8281eleq2d 2892 . . . . . . 7 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴𝐼𝑥) ↔ 𝐵 ∈ (𝐴𝐼𝑧)))
83 oveq2 6913 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 𝑥) = (𝐴 𝑧))
8483eqeq1d 2827 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 𝑥) = (𝐶 𝐷) ↔ (𝐴 𝑧) = (𝐶 𝐷)))
8582, 84anbi12d 626 . . . . . 6 (𝑥 = 𝑧 → ((𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))))
8685cbvrexv 3384 . . . . 5 (∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8780, 86sylib 210 . . . 4 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8879, 87r19.29a 3288 . . 3 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
8950, 88impbida 837 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
9010, 89bitrd 271 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wrex 3118   class class class wbr 4873  cfv 6123  (class class class)co 6905  ⟨“cs3 13963  Basecbs 16222  distcds 16314  TarskiGcstrkg 25742  Itvcitv 25748  LineGclng 25749  cgrGccgrg 25822  ≤Gcleg 25894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-s2 13969  df-s3 13970  df-trkgc 25760  df-trkgb 25761  df-trkgcb 25762  df-trkg 25765  df-cgrg 25823  df-leg 25895
This theorem is referenced by:  legtri3  25902  legtrid  25903
  Copyright terms: Public domain W3C validator