MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov2 Structured version   Visualization version   GIF version

Theorem legov2 28612
Description: An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   (𝑥)

Proof of Theorem legov2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.l . . 3 = (≤G‘𝐺)
5 legval.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 legov.a . . 3 (𝜑𝐴𝑃)
7 legov.b . . 3 (𝜑𝐵𝑃)
8 legov.c . . 3 (𝜑𝐶𝑃)
9 legov.d . . 3 (𝜑𝐷𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9legov 28611 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
11 eqid 2740 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
125ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐺 ∈ TarskiG)
138ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
14 simplr 768 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧𝑃)
159ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
16 eqid 2740 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
176ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐴𝑃)
187ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐵𝑃)
19 simprl 770 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧 ∈ (𝐶𝐼𝐷))
201, 11, 3, 12, 13, 15, 14, 19btwncolg1 28581 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝑧 ∈ (𝐶(LineG‘𝐺)𝐷) ∨ 𝐶 = 𝐷))
21 simprr 772 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐴 𝐵) = (𝐶 𝑧))
2221eqcomd 2746 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝑧) = (𝐴 𝐵))
231, 11, 3, 12, 13, 14, 15, 16, 17, 18, 2, 20, 22lnext 28593 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
2412ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
2513ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐶𝑃)
2614ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧𝑃)
2715ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐷𝑃)
2817ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐴𝑃)
2918ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵𝑃)
30 simplr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑥𝑃)
31 simpr 484 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
32 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
3332simpld 494 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧 ∈ (𝐶𝐼𝐷))
341, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33tgbtwnxfr 28556 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵 ∈ (𝐴𝐼𝑥))
351, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31trgcgrcom 28554 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
361, 2, 3, 16, 24, 28, 29, 30, 25, 26, 27, 35cgr3simp3 28548 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑥 𝐴) = (𝐷 𝐶))
371, 2, 3, 24, 30, 28, 27, 25, 36tgcgrcomlr 28506 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐴 𝑥) = (𝐶 𝐷))
3834, 37jca 511 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
3938ex 412 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) → (⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4039reximdva 3174 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4123, 40mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
4241adantllr 718 . . . 4 ((((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
43 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
44 eleq1 2832 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝐶𝐼𝐷) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
45 oveq2 7456 . . . . . . . 8 (𝑦 = 𝑧 → (𝐶 𝑦) = (𝐶 𝑧))
4645eqeq2d 2751 . . . . . . 7 (𝑦 = 𝑧 → ((𝐴 𝐵) = (𝐶 𝑦) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
4744, 46anbi12d 631 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
4847cbvrexvw 3244 . . . . 5 (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
4943, 48sylib 218 . . . 4 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5042, 49r19.29a 3168 . . 3 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
515ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
526ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐴𝑃)
53 simplr 768 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝑧𝑃)
547ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵𝑃)
558ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐶𝑃)
569ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐷𝑃)
57 simprl 770 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝑧))
581, 11, 3, 51, 52, 54, 53, 57btwncolg3 28583 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝑧 ∈ (𝐴(LineG‘𝐺)𝐵) ∨ 𝐴 = 𝐵))
59 simprr 772 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝐴 𝑧) = (𝐶 𝐷))
601, 11, 3, 51, 52, 53, 54, 16, 55, 56, 2, 58, 59lnext 28593 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
6151ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
6252ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐴𝑃)
6354ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵𝑃)
6453ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑧𝑃)
6555ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐶𝑃)
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦𝑃)
6756ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐷𝑃)
68 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
691, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3swap23 28550 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝐵𝑧”⟩(cgrG‘𝐺)⟨“𝐶𝑦𝐷”⟩)
70 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
7170simpld 494 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵 ∈ (𝐴𝐼𝑧))
721, 2, 3, 16, 61, 62, 63, 64, 65, 66, 67, 69, 71tgbtwnxfr 28556 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦 ∈ (𝐶𝐼𝐷))
731, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3simp3 28548 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 𝐴) = (𝑦 𝐶))
741, 2, 3, 61, 63, 62, 66, 65, 73tgcgrcomlr 28506 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐴 𝐵) = (𝐶 𝑦))
7572, 74jca 511 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7675ex 412 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) → (⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7776reximdva 3174 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7860, 77mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7978adantllr 718 . . . 4 ((((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) ∧ 𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
80 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
81 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴𝐼𝑥) = (𝐴𝐼𝑧))
8281eleq2d 2830 . . . . . . 7 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴𝐼𝑥) ↔ 𝐵 ∈ (𝐴𝐼𝑧)))
83 oveq2 7456 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 𝑥) = (𝐴 𝑧))
8483eqeq1d 2742 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 𝑥) = (𝐶 𝐷) ↔ (𝐴 𝑧) = (𝐶 𝐷)))
8582, 84anbi12d 631 . . . . . 6 (𝑥 = 𝑧 → ((𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))))
8685cbvrexvw 3244 . . . . 5 (∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8780, 86sylib 218 . . . 4 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8879, 87r19.29a 3168 . . 3 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
8950, 88impbida 800 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
9010, 89bitrd 279 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  ⟨“cs3 14891  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  cgrGccgrg 28536  ≤Gcleg 28608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537  df-leg 28609
This theorem is referenced by:  legtri3  28616  legtrid  28617
  Copyright terms: Public domain W3C validator