Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov2 Structured version   Visualization version   GIF version

Theorem legov2 25898
 Description: An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   (𝑥)

Proof of Theorem legov2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.l . . 3 = (≤G‘𝐺)
5 legval.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 legov.a . . 3 (𝜑𝐴𝑃)
7 legov.b . . 3 (𝜑𝐵𝑃)
8 legov.c . . 3 (𝜑𝐶𝑃)
9 legov.d . . 3 (𝜑𝐷𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9legov 25897 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
11 eqid 2825 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
125ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐺 ∈ TarskiG)
138ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
14 simplr 787 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧𝑃)
159ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
16 eqid 2825 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
176ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐴𝑃)
187ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐵𝑃)
19 simprl 789 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧 ∈ (𝐶𝐼𝐷))
201, 11, 3, 12, 13, 15, 14, 19btwncolg1 25867 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝑧 ∈ (𝐶(LineG‘𝐺)𝐷) ∨ 𝐶 = 𝐷))
21 simprr 791 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐴 𝐵) = (𝐶 𝑧))
2221eqcomd 2831 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝑧) = (𝐴 𝐵))
231, 11, 3, 12, 13, 14, 15, 16, 17, 18, 2, 20, 22lnext 25879 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
2412ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
2513ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐶𝑃)
2614ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧𝑃)
2715ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐷𝑃)
2817ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐴𝑃)
2918ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵𝑃)
30 simplr 787 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑥𝑃)
31 simpr 479 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
32 simpllr 795 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
3332simpld 490 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧 ∈ (𝐶𝐼𝐷))
341, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33tgbtwnxfr 25842 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵 ∈ (𝐴𝐼𝑥))
351, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31trgcgrcom 25840 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
361, 2, 3, 16, 24, 28, 29, 30, 25, 26, 27, 35cgr3simp3 25834 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑥 𝐴) = (𝐷 𝐶))
371, 2, 3, 24, 30, 28, 27, 25, 36tgcgrcomlr 25792 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐴 𝑥) = (𝐶 𝐷))
3834, 37jca 509 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
3938ex 403 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) → (⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4039reximdva 3225 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4123, 40mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
4241adantllr 712 . . . 4 ((((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
43 simpr 479 . . . . 5 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
44 eleq1 2894 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝐶𝐼𝐷) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
45 oveq2 6913 . . . . . . . 8 (𝑦 = 𝑧 → (𝐶 𝑦) = (𝐶 𝑧))
4645eqeq2d 2835 . . . . . . 7 (𝑦 = 𝑧 → ((𝐴 𝐵) = (𝐶 𝑦) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
4744, 46anbi12d 626 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
4847cbvrexv 3384 . . . . 5 (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
4943, 48sylib 210 . . . 4 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5042, 49r19.29a 3288 . . 3 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
515ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
526ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐴𝑃)
53 simplr 787 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝑧𝑃)
547ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵𝑃)
558ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐶𝑃)
569ad2antrr 719 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐷𝑃)
57 simprl 789 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝑧))
581, 11, 3, 51, 52, 54, 53, 57btwncolg3 25869 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝑧 ∈ (𝐴(LineG‘𝐺)𝐵) ∨ 𝐴 = 𝐵))
59 simprr 791 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝐴 𝑧) = (𝐶 𝐷))
601, 11, 3, 51, 52, 53, 54, 16, 55, 56, 2, 58, 59lnext 25879 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
6151ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
6252ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐴𝑃)
6354ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵𝑃)
6453ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑧𝑃)
6555ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐶𝑃)
66 simplr 787 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦𝑃)
6756ad2antrr 719 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐷𝑃)
68 simpr 479 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
691, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3swap23 25836 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝐵𝑧”⟩(cgrG‘𝐺)⟨“𝐶𝑦𝐷”⟩)
70 simpllr 795 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
7170simpld 490 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵 ∈ (𝐴𝐼𝑧))
721, 2, 3, 16, 61, 62, 63, 64, 65, 66, 67, 69, 71tgbtwnxfr 25842 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦 ∈ (𝐶𝐼𝐷))
731, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3simp3 25834 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 𝐴) = (𝑦 𝐶))
741, 2, 3, 61, 63, 62, 66, 65, 73tgcgrcomlr 25792 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐴 𝐵) = (𝐶 𝑦))
7572, 74jca 509 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7675ex 403 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) → (⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7776reximdva 3225 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7860, 77mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7978adantllr 712 . . . 4 ((((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) ∧ 𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
80 simpr 479 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
81 oveq2 6913 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴𝐼𝑥) = (𝐴𝐼𝑧))
8281eleq2d 2892 . . . . . . 7 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴𝐼𝑥) ↔ 𝐵 ∈ (𝐴𝐼𝑧)))
83 oveq2 6913 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 𝑥) = (𝐴 𝑧))
8483eqeq1d 2827 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 𝑥) = (𝐶 𝐷) ↔ (𝐴 𝑧) = (𝐶 𝐷)))
8582, 84anbi12d 626 . . . . . 6 (𝑥 = 𝑧 → ((𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))))
8685cbvrexv 3384 . . . . 5 (∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8780, 86sylib 210 . . . 4 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8879, 87r19.29a 3288 . . 3 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
8950, 88impbida 837 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
9010, 89bitrd 271 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658   ∈ wcel 2166  ∃wrex 3118   class class class wbr 4873  ‘cfv 6123  (class class class)co 6905  ⟨“cs3 13963  Basecbs 16222  distcds 16314  TarskiGcstrkg 25742  Itvcitv 25748  LineGclng 25749  cgrGccgrg 25822  ≤Gcleg 25894 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-s2 13969  df-s3 13970  df-trkgc 25760  df-trkgb 25761  df-trkgcb 25762  df-trkg 25765  df-cgrg 25823  df-leg 25895 This theorem is referenced by:  legtri3  25902  legtrid  25903
 Copyright terms: Public domain W3C validator