MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov2 Structured version   Visualization version   GIF version

Theorem legov2 28566
Description: An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   (𝑥)

Proof of Theorem legov2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.l . . 3 = (≤G‘𝐺)
5 legval.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 legov.a . . 3 (𝜑𝐴𝑃)
7 legov.b . . 3 (𝜑𝐵𝑃)
8 legov.c . . 3 (𝜑𝐶𝑃)
9 legov.d . . 3 (𝜑𝐷𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9legov 28565 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
11 eqid 2729 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
125ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐺 ∈ TarskiG)
138ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
14 simplr 768 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧𝑃)
159ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
16 eqid 2729 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
176ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐴𝑃)
187ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐵𝑃)
19 simprl 770 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧 ∈ (𝐶𝐼𝐷))
201, 11, 3, 12, 13, 15, 14, 19btwncolg1 28535 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝑧 ∈ (𝐶(LineG‘𝐺)𝐷) ∨ 𝐶 = 𝐷))
21 simprr 772 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐴 𝐵) = (𝐶 𝑧))
2221eqcomd 2735 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝑧) = (𝐴 𝐵))
231, 11, 3, 12, 13, 14, 15, 16, 17, 18, 2, 20, 22lnext 28547 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
2412ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
2513ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐶𝑃)
2614ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧𝑃)
2715ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐷𝑃)
2817ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐴𝑃)
2918ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵𝑃)
30 simplr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑥𝑃)
31 simpr 484 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
32 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
3332simpld 494 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧 ∈ (𝐶𝐼𝐷))
341, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33tgbtwnxfr 28510 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵 ∈ (𝐴𝐼𝑥))
351, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31trgcgrcom 28508 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
361, 2, 3, 16, 24, 28, 29, 30, 25, 26, 27, 35cgr3simp3 28502 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑥 𝐴) = (𝐷 𝐶))
371, 2, 3, 24, 30, 28, 27, 25, 36tgcgrcomlr 28460 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐴 𝑥) = (𝐶 𝐷))
3834, 37jca 511 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
3938ex 412 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) → (⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4039reximdva 3146 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4123, 40mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
4241adantllr 719 . . . 4 ((((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
43 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
44 eleq1 2816 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝐶𝐼𝐷) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
45 oveq2 7377 . . . . . . . 8 (𝑦 = 𝑧 → (𝐶 𝑦) = (𝐶 𝑧))
4645eqeq2d 2740 . . . . . . 7 (𝑦 = 𝑧 → ((𝐴 𝐵) = (𝐶 𝑦) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
4744, 46anbi12d 632 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
4847cbvrexvw 3214 . . . . 5 (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
4943, 48sylib 218 . . . 4 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5042, 49r19.29a 3141 . . 3 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
515ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
526ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐴𝑃)
53 simplr 768 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝑧𝑃)
547ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵𝑃)
558ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐶𝑃)
569ad2antrr 726 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐷𝑃)
57 simprl 770 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝑧))
581, 11, 3, 51, 52, 54, 53, 57btwncolg3 28537 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝑧 ∈ (𝐴(LineG‘𝐺)𝐵) ∨ 𝐴 = 𝐵))
59 simprr 772 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝐴 𝑧) = (𝐶 𝐷))
601, 11, 3, 51, 52, 53, 54, 16, 55, 56, 2, 58, 59lnext 28547 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
6151ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
6252ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐴𝑃)
6354ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵𝑃)
6453ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑧𝑃)
6555ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐶𝑃)
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦𝑃)
6756ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐷𝑃)
68 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
691, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3swap23 28504 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝐵𝑧”⟩(cgrG‘𝐺)⟨“𝐶𝑦𝐷”⟩)
70 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
7170simpld 494 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵 ∈ (𝐴𝐼𝑧))
721, 2, 3, 16, 61, 62, 63, 64, 65, 66, 67, 69, 71tgbtwnxfr 28510 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦 ∈ (𝐶𝐼𝐷))
731, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3simp3 28502 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 𝐴) = (𝑦 𝐶))
741, 2, 3, 61, 63, 62, 66, 65, 73tgcgrcomlr 28460 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐴 𝐵) = (𝐶 𝑦))
7572, 74jca 511 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7675ex 412 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) → (⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7776reximdva 3146 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7860, 77mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7978adantllr 719 . . . 4 ((((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) ∧ 𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
80 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
81 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴𝐼𝑥) = (𝐴𝐼𝑧))
8281eleq2d 2814 . . . . . . 7 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴𝐼𝑥) ↔ 𝐵 ∈ (𝐴𝐼𝑧)))
83 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 𝑥) = (𝐴 𝑧))
8483eqeq1d 2731 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 𝑥) = (𝐶 𝐷) ↔ (𝐴 𝑧) = (𝐶 𝐷)))
8582, 84anbi12d 632 . . . . . 6 (𝑥 = 𝑧 → ((𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))))
8685cbvrexvw 3214 . . . . 5 (∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8780, 86sylib 218 . . . 4 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8879, 87r19.29a 3141 . . 3 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
8950, 88impbida 800 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
9010, 89bitrd 279 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  ⟨“cs3 14784  Basecbs 17155  distcds 17205  TarskiGcstrkg 28407  Itvcitv 28413  LineGclng 28414  cgrGccgrg 28490  ≤Gcleg 28562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-trkgc 28428  df-trkgb 28429  df-trkgcb 28430  df-trkg 28433  df-cgrg 28491  df-leg 28563
This theorem is referenced by:  legtri3  28570  legtrid  28571
  Copyright terms: Public domain W3C validator