MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov2 Structured version   Visualization version   GIF version

Theorem legov2 26358
Description: An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legov.a (𝜑𝐴𝑃)
legov.b (𝜑𝐵𝑃)
legov.c (𝜑𝐶𝑃)
legov.d (𝜑𝐷𝑃)
Assertion
Ref Expression
legov2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   (𝑥)

Proof of Theorem legov2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . 3 𝑃 = (Base‘𝐺)
2 legval.d . . 3 = (dist‘𝐺)
3 legval.i . . 3 𝐼 = (Itv‘𝐺)
4 legval.l . . 3 = (≤G‘𝐺)
5 legval.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 legov.a . . 3 (𝜑𝐴𝑃)
7 legov.b . . 3 (𝜑𝐵𝑃)
8 legov.c . . 3 (𝜑𝐶𝑃)
9 legov.d . . 3 (𝜑𝐷𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9legov 26357 . 2 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
11 eqid 2821 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
125ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐺 ∈ TarskiG)
138ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐶𝑃)
14 simplr 768 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧𝑃)
159ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐷𝑃)
16 eqid 2821 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
176ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐴𝑃)
187ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝐵𝑃)
19 simprl 770 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → 𝑧 ∈ (𝐶𝐼𝐷))
201, 11, 3, 12, 13, 15, 14, 19btwncolg1 26327 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝑧 ∈ (𝐶(LineG‘𝐺)𝐷) ∨ 𝐶 = 𝐷))
21 simprr 772 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐴 𝐵) = (𝐶 𝑧))
2221eqcomd 2827 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (𝐶 𝑧) = (𝐴 𝐵))
231, 11, 3, 12, 13, 14, 15, 16, 17, 18, 2, 20, 22lnext 26339 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
2412ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐺 ∈ TarskiG)
2513ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐶𝑃)
2614ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧𝑃)
2715ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐷𝑃)
2817ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐴𝑃)
2918ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵𝑃)
30 simplr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑥𝑃)
31 simpr 488 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩)
32 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
3332simpld 498 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝑧 ∈ (𝐶𝐼𝐷))
341, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31, 33tgbtwnxfr 26302 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → 𝐵 ∈ (𝐴𝐼𝑥))
351, 2, 3, 16, 24, 25, 26, 27, 28, 29, 30, 31trgcgrcom 26300 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐶𝑧𝐷”⟩)
361, 2, 3, 16, 24, 28, 29, 30, 25, 26, 27, 35cgr3simp3 26294 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝑥 𝐴) = (𝐷 𝐶))
371, 2, 3, 24, 30, 28, 27, 25, 36tgcgrcomlr 26252 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐴 𝑥) = (𝐶 𝐷))
3834, 37jca 515 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) ∧ ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩) → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
3938ex 416 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) ∧ 𝑥𝑃) → (⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4039reximdva 3260 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → (∃𝑥𝑃 ⟨“𝐶𝑧𝐷”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝑥”⟩ → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
4123, 40mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
4241adantllr 718 . . . 4 ((((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) ∧ 𝑧𝑃) ∧ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
43 simpr 488 . . . . 5 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
44 eleq1 2899 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝐶𝐼𝐷) ↔ 𝑧 ∈ (𝐶𝐼𝐷)))
45 oveq2 7138 . . . . . . . 8 (𝑦 = 𝑧 → (𝐶 𝑦) = (𝐶 𝑧))
4645eqeq2d 2832 . . . . . . 7 (𝑦 = 𝑧 → ((𝐴 𝐵) = (𝐶 𝑦) ↔ (𝐴 𝐵) = (𝐶 𝑧)))
4744, 46anbi12d 633 . . . . . 6 (𝑦 = 𝑧 → ((𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
4847cbvrexvw 3427 . . . . 5 (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
4943, 48sylib 221 . . . 4 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧)))
5042, 49r19.29a 3275 . . 3 ((𝜑 ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
515ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
526ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐴𝑃)
53 simplr 768 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝑧𝑃)
547ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵𝑃)
558ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐶𝑃)
569ad2antrr 725 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐷𝑃)
57 simprl 770 . . . . . . . 8 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝑧))
581, 11, 3, 51, 52, 54, 53, 57btwncolg3 26329 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝑧 ∈ (𝐴(LineG‘𝐺)𝐵) ∨ 𝐴 = 𝐵))
59 simprr 772 . . . . . . 7 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (𝐴 𝑧) = (𝐶 𝐷))
601, 11, 3, 51, 52, 53, 54, 16, 55, 56, 2, 58, 59lnext 26339 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
6151ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
6252ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐴𝑃)
6354ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵𝑃)
6453ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑧𝑃)
6555ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐶𝑃)
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦𝑃)
6756ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐷𝑃)
68 simpr 488 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩)
691, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3swap23 26296 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → ⟨“𝐴𝐵𝑧”⟩(cgrG‘𝐺)⟨“𝐶𝑦𝐷”⟩)
70 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
7170simpld 498 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝐵 ∈ (𝐴𝐼𝑧))
721, 2, 3, 16, 61, 62, 63, 64, 65, 66, 67, 69, 71tgbtwnxfr 26302 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → 𝑦 ∈ (𝐶𝐼𝐷))
731, 2, 3, 16, 61, 62, 64, 63, 65, 67, 66, 68cgr3simp3 26294 . . . . . . . . . 10 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐵 𝐴) = (𝑦 𝐶))
741, 2, 3, 61, 63, 62, 66, 65, 73tgcgrcomlr 26252 . . . . . . . . 9 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝐴 𝐵) = (𝐶 𝑦))
7572, 74jca 515 . . . . . . . 8 (((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩) → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7675ex 416 . . . . . . 7 ((((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) ∧ 𝑦𝑃) → (⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7776reximdva 3260 . . . . . 6 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → (∃𝑦𝑃 ⟨“𝐴𝑧𝐵”⟩(cgrG‘𝐺)⟨“𝐶𝐷𝑦”⟩ → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦))))
7860, 77mpd 15 . . . . 5 (((𝜑𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
7978adantllr 718 . . . 4 ((((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) ∧ 𝑧𝑃) ∧ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
80 simpr 488 . . . . 5 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)))
81 oveq2 7138 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴𝐼𝑥) = (𝐴𝐼𝑧))
8281eleq2d 2897 . . . . . . 7 (𝑥 = 𝑧 → (𝐵 ∈ (𝐴𝐼𝑥) ↔ 𝐵 ∈ (𝐴𝐼𝑧)))
83 oveq2 7138 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 𝑥) = (𝐴 𝑧))
8483eqeq1d 2823 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 𝑥) = (𝐶 𝐷) ↔ (𝐴 𝑧) = (𝐶 𝐷)))
8582, 84anbi12d 633 . . . . . 6 (𝑥 = 𝑧 → ((𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷))))
8685cbvrexvw 3427 . . . . 5 (∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷)) ↔ ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8780, 86sylib 221 . . . 4 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑧𝑃 (𝐵 ∈ (𝐴𝐼𝑧) ∧ (𝐴 𝑧) = (𝐶 𝐷)))
8879, 87r19.29a 3275 . . 3 ((𝜑 ∧ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)))
8950, 88impbida 800 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑦)) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
9010, 89bitrd 282 1 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3127   class class class wbr 5039  cfv 6328  (class class class)co 7130  ⟨“cs3 14183  Basecbs 16461  distcds 16552  TarskiGcstrkg 26202  Itvcitv 26208  LineGclng 26209  cgrGccgrg 26282  ≤Gcleg 26354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-pm 8384  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-concat 13902  df-s1 13929  df-s2 14189  df-s3 14190  df-trkgc 26220  df-trkgb 26221  df-trkgcb 26222  df-trkg 26225  df-cgrg 26283  df-leg 26355
This theorem is referenced by:  legtri3  26362  legtrid  26363
  Copyright terms: Public domain W3C validator