Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirtrcgr | Structured version Visualization version GIF version |
Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirtrcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
mirtrcgr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirtrcgr.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
mirtrcgr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) |
Ref | Expression |
---|---|
mirtrcgr | ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirtrcgr.e | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirtrcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
10 | mirtrcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircl 26547 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
12 | mirtrcgr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
13 | mirtrcgr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
14 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
15 | mirtrcgr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
16 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircl 26547 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
17 | mirtrcgr.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
18 | mirtrcgr.2 | . . . . . 6 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) | |
19 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp1 26406 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
20 | 1, 2, 5, 4, 10, 8, 15, 13, 19 | tgcgrcomlr 26366 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
21 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircgr 26543 | . . . 4 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
22 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircgr 26543 | . . . 4 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
23 | 20, 21, 22 | 3eqtr4d 2804 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
24 | 1, 2, 5, 4, 8, 11, 13, 16, 23 | tgcgrcomlr 26366 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐵) = ((𝑁‘𝑋) − 𝑌)) |
25 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp2 26407 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝑌 − 𝑍)) |
26 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mirbtwn 26544 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
27 | 1, 6, 5, 4, 11, 10, 8, 26 | btwncolg1 26441 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((𝑀‘𝐴)𝐿𝐴) ∨ (𝑀‘𝐴) = 𝐴)) |
28 | 1, 6, 5, 4, 11, 10, 8, 27 | colcom 26444 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))) |
29 | 1, 2, 5, 6, 7, 4, 3, 9, 14, 10, 8, 15, 13, 19 | mircgrextend 26568 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
30 | 1, 2, 5, 4, 10, 11, 15, 16, 29 | tgcgrcomlr 26366 | . . . . 5 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐴) = ((𝑁‘𝑋) − 𝑋)) |
31 | 1, 2, 3, 4, 10, 8, 11, 15, 13, 16, 19, 23, 30 | trgcgr 26402 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵(𝑀‘𝐴)”〉 ∼ 〈“𝑋𝑌(𝑁‘𝑋)”〉) |
32 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp3 26408 | . . . . 5 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝑍 − 𝑋)) |
33 | 1, 2, 5, 4, 12, 10, 17, 15, 32 | tgcgrcomlr 26366 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝑋 − 𝑍)) |
34 | mirtrcgr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
35 | 1, 6, 5, 4, 10, 8, 11, 3, 15, 13, 2, 12, 16, 17, 28, 31, 33, 25, 34 | tgfscgr 26454 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐶) = ((𝑁‘𝑋) − 𝑍)) |
36 | 1, 2, 5, 4, 11, 12, 16, 17, 35 | tgcgrcomlr 26366 | . 2 ⊢ (𝜑 → (𝐶 − (𝑀‘𝐴)) = (𝑍 − (𝑁‘𝑋))) |
37 | 1, 2, 3, 4, 11, 8, 12, 16, 13, 17, 24, 25, 36 | trgcgr 26402 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 〈“cs3 14244 Basecbs 16534 distcds 16625 TarskiGcstrkg 26316 Itvcitv 26322 LineGclng 26323 cgrGccgrg 26396 pInvGcmir 26538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-pm 8420 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-dju 9356 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-xnn0 12000 df-z 12014 df-uz 12276 df-fz 12933 df-fzo 13076 df-hash 13734 df-word 13907 df-concat 13963 df-s1 13990 df-s2 14250 df-s3 14251 df-trkgc 26334 df-trkgb 26335 df-trkgcb 26336 df-trkg 26339 df-cgrg 26397 df-mir 26539 |
This theorem is referenced by: sacgr 26717 |
Copyright terms: Public domain | W3C validator |