![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirtrcgr | Structured version Visualization version GIF version |
Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirtrcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
mirtrcgr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirtrcgr.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
mirtrcgr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) |
Ref | Expression |
---|---|
mirtrcgr | ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirtrcgr.e | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirtrcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
10 | mirtrcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircl 28687 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
12 | mirtrcgr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
13 | mirtrcgr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
14 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
15 | mirtrcgr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
16 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircl 28687 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
17 | mirtrcgr.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
18 | mirtrcgr.2 | . . . . . 6 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) | |
19 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp1 28546 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
20 | 1, 2, 5, 4, 10, 8, 15, 13, 19 | tgcgrcomlr 28506 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
21 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircgr 28683 | . . . 4 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
22 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircgr 28683 | . . . 4 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
23 | 20, 21, 22 | 3eqtr4d 2790 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
24 | 1, 2, 5, 4, 8, 11, 13, 16, 23 | tgcgrcomlr 28506 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐵) = ((𝑁‘𝑋) − 𝑌)) |
25 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp2 28547 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝑌 − 𝑍)) |
26 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mirbtwn 28684 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
27 | 1, 6, 5, 4, 11, 10, 8, 26 | btwncolg1 28581 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((𝑀‘𝐴)𝐿𝐴) ∨ (𝑀‘𝐴) = 𝐴)) |
28 | 1, 6, 5, 4, 11, 10, 8, 27 | colcom 28584 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))) |
29 | 1, 2, 5, 6, 7, 4, 3, 9, 14, 10, 8, 15, 13, 19 | mircgrextend 28708 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
30 | 1, 2, 5, 4, 10, 11, 15, 16, 29 | tgcgrcomlr 28506 | . . . . 5 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐴) = ((𝑁‘𝑋) − 𝑋)) |
31 | 1, 2, 3, 4, 10, 8, 11, 15, 13, 16, 19, 23, 30 | trgcgr 28542 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵(𝑀‘𝐴)”〉 ∼ 〈“𝑋𝑌(𝑁‘𝑋)”〉) |
32 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp3 28548 | . . . . 5 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝑍 − 𝑋)) |
33 | 1, 2, 5, 4, 12, 10, 17, 15, 32 | tgcgrcomlr 28506 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝑋 − 𝑍)) |
34 | mirtrcgr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
35 | 1, 6, 5, 4, 10, 8, 11, 3, 15, 13, 2, 12, 16, 17, 28, 31, 33, 25, 34 | tgfscgr 28594 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐶) = ((𝑁‘𝑋) − 𝑍)) |
36 | 1, 2, 5, 4, 11, 12, 16, 17, 35 | tgcgrcomlr 28506 | . 2 ⊢ (𝜑 → (𝐶 − (𝑀‘𝐴)) = (𝑍 − (𝑁‘𝑋))) |
37 | 1, 2, 3, 4, 11, 8, 12, 16, 13, 17, 24, 25, 36 | trgcgr 28542 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 〈“cs3 14891 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 cgrGccgrg 28536 pInvGcmir 28678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-cgrg 28537 df-mir 28679 |
This theorem is referenced by: sacgr 28857 |
Copyright terms: Public domain | W3C validator |