![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirtrcgr | Structured version Visualization version GIF version |
Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirtrcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
mirtrcgr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirtrcgr.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
mirtrcgr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) |
Ref | Expression |
---|---|
mirtrcgr | ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirtrcgr.e | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirtrcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
10 | mirtrcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircl 26016 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
12 | mirtrcgr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
13 | mirtrcgr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
14 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
15 | mirtrcgr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
16 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircl 26016 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
17 | mirtrcgr.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
18 | mirtrcgr.2 | . . . . . 6 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) | |
19 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp1 25875 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
20 | 1, 2, 5, 4, 10, 8, 15, 13, 19 | tgcgrcomlr 25835 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
21 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircgr 26012 | . . . 4 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
22 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircgr 26012 | . . . 4 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
23 | 20, 21, 22 | 3eqtr4d 2824 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
24 | 1, 2, 5, 4, 8, 11, 13, 16, 23 | tgcgrcomlr 25835 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐵) = ((𝑁‘𝑋) − 𝑌)) |
25 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp2 25876 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝑌 − 𝑍)) |
26 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mirbtwn 26013 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
27 | 1, 6, 5, 4, 11, 10, 8, 26 | btwncolg1 25910 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((𝑀‘𝐴)𝐿𝐴) ∨ (𝑀‘𝐴) = 𝐴)) |
28 | 1, 6, 5, 4, 11, 10, 8, 27 | colcom 25913 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))) |
29 | 1, 2, 5, 6, 7, 4, 3, 9, 14, 10, 8, 15, 13, 19 | mircgrextend 26037 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
30 | 1, 2, 5, 4, 10, 11, 15, 16, 29 | tgcgrcomlr 25835 | . . . . 5 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐴) = ((𝑁‘𝑋) − 𝑋)) |
31 | 1, 2, 3, 4, 10, 8, 11, 15, 13, 16, 19, 23, 30 | trgcgr 25871 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵(𝑀‘𝐴)”〉 ∼ 〈“𝑋𝑌(𝑁‘𝑋)”〉) |
32 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp3 25877 | . . . . 5 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝑍 − 𝑋)) |
33 | 1, 2, 5, 4, 12, 10, 17, 15, 32 | tgcgrcomlr 25835 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝑋 − 𝑍)) |
34 | mirtrcgr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
35 | 1, 6, 5, 4, 10, 8, 11, 3, 15, 13, 2, 12, 16, 17, 28, 31, 33, 25, 34 | tgfscgr 25923 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐶) = ((𝑁‘𝑋) − 𝑍)) |
36 | 1, 2, 5, 4, 11, 12, 16, 17, 35 | tgcgrcomlr 25835 | . 2 ⊢ (𝜑 → (𝐶 − (𝑀‘𝐴)) = (𝑍 − (𝑁‘𝑋))) |
37 | 1, 2, 3, 4, 11, 8, 12, 16, 13, 17, 24, 25, 36 | trgcgr 25871 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 〈“cs3 13997 Basecbs 16259 distcds 16351 TarskiGcstrkg 25785 Itvcitv 25791 LineGclng 25792 cgrGccgrg 25865 pInvGcmir 26007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-xnn0 11719 df-z 11733 df-uz 11997 df-fz 12648 df-fzo 12789 df-hash 13440 df-word 13604 df-concat 13665 df-s1 13690 df-s2 14003 df-s3 14004 df-trkgc 25803 df-trkgb 25804 df-trkgcb 25805 df-trkg 25808 df-cgrg 25866 df-mir 26008 |
This theorem is referenced by: sacgr 26183 sacgrOLD 26184 |
Copyright terms: Public domain | W3C validator |