| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirtrcgr | Structured version Visualization version GIF version | ||
| Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) |
| mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) |
| mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) |
| mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| mirtrcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| mirtrcgr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| mirtrcgr.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| mirtrcgr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) |
| Ref | Expression |
|---|---|
| mirtrcgr | ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | mirtrcgr.e | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
| 4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | mirtrcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
| 10 | mirtrcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircl 28645 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 12 | mirtrcgr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 13 | mirtrcgr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 14 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
| 15 | mirtrcgr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 16 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircl 28645 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) |
| 17 | mirtrcgr.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 18 | mirtrcgr.2 | . . . . . 6 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) | |
| 19 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp1 28504 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) |
| 20 | 1, 2, 5, 4, 10, 8, 15, 13, 19 | tgcgrcomlr 28464 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) |
| 21 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircgr 28641 | . . . 4 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) |
| 22 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircgr 28641 | . . . 4 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) |
| 23 | 20, 21, 22 | 3eqtr4d 2781 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) |
| 24 | 1, 2, 5, 4, 8, 11, 13, 16, 23 | tgcgrcomlr 28464 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐵) = ((𝑁‘𝑋) − 𝑌)) |
| 25 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp2 28505 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝑌 − 𝑍)) |
| 26 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mirbtwn 28642 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) |
| 27 | 1, 6, 5, 4, 11, 10, 8, 26 | btwncolg1 28539 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((𝑀‘𝐴)𝐿𝐴) ∨ (𝑀‘𝐴) = 𝐴)) |
| 28 | 1, 6, 5, 4, 11, 10, 8, 27 | colcom 28542 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))) |
| 29 | 1, 2, 5, 6, 7, 4, 3, 9, 14, 10, 8, 15, 13, 19 | mircgrextend 28666 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) |
| 30 | 1, 2, 5, 4, 10, 11, 15, 16, 29 | tgcgrcomlr 28464 | . . . . 5 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐴) = ((𝑁‘𝑋) − 𝑋)) |
| 31 | 1, 2, 3, 4, 10, 8, 11, 15, 13, 16, 19, 23, 30 | trgcgr 28500 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵(𝑀‘𝐴)”〉 ∼ 〈“𝑋𝑌(𝑁‘𝑋)”〉) |
| 32 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp3 28506 | . . . . 5 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝑍 − 𝑋)) |
| 33 | 1, 2, 5, 4, 12, 10, 17, 15, 32 | tgcgrcomlr 28464 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝑋 − 𝑍)) |
| 34 | mirtrcgr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 35 | 1, 6, 5, 4, 10, 8, 11, 3, 15, 13, 2, 12, 16, 17, 28, 31, 33, 25, 34 | tgfscgr 28552 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐶) = ((𝑁‘𝑋) − 𝑍)) |
| 36 | 1, 2, 5, 4, 11, 12, 16, 17, 35 | tgcgrcomlr 28464 | . 2 ⊢ (𝜑 → (𝐶 − (𝑀‘𝐴)) = (𝑍 − (𝑁‘𝑋))) |
| 37 | 1, 2, 3, 4, 11, 8, 12, 16, 13, 17, 24, 25, 36 | trgcgr 28500 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 〈“cs3 14866 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 cgrGccgrg 28494 pInvGcmir 28636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-cgrg 28495 df-mir 28637 |
| This theorem is referenced by: sacgr 28815 |
| Copyright terms: Public domain | W3C validator |