|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mirtrcgr | Structured version Visualization version GIF version | ||
| Description: Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) | 
| mirval.d | ⊢ − = (dist‘𝐺) | 
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) | 
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| mirtrcgr.e | ⊢ ∼ = (cgrG‘𝐺) | 
| mirtrcgr.m | ⊢ 𝑀 = (𝑆‘𝐵) | 
| mirtrcgr.n | ⊢ 𝑁 = (𝑆‘𝑌) | 
| mirtrcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| mirtrcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| mirtrcgr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) | 
| mirtrcgr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) | 
| mirtrcgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| mirtrcgr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) | 
| mirtrcgr.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
| mirtrcgr.2 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) | 
| Ref | Expression | 
|---|---|
| mirtrcgr | ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | mirtrcgr.e | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
| 4 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | mirtrcgr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | mirtrcgr.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐵) | |
| 10 | mirtrcgr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircl 28670 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) | 
| 12 | mirtrcgr.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 13 | mirtrcgr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 14 | mirtrcgr.n | . . 3 ⊢ 𝑁 = (𝑆‘𝑌) | |
| 15 | mirtrcgr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 16 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircl 28670 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑃) | 
| 17 | mirtrcgr.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 18 | mirtrcgr.2 | . . . . . 6 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) | |
| 19 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp1 28529 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) | 
| 20 | 1, 2, 5, 4, 10, 8, 15, 13, 19 | tgcgrcomlr 28489 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝑌 − 𝑋)) | 
| 21 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mircgr 28666 | . . . 4 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝐵 − 𝐴)) | 
| 22 | 1, 2, 5, 6, 7, 4, 13, 14, 15 | mircgr 28666 | . . . 4 ⊢ (𝜑 → (𝑌 − (𝑁‘𝑋)) = (𝑌 − 𝑋)) | 
| 23 | 20, 21, 22 | 3eqtr4d 2786 | . . 3 ⊢ (𝜑 → (𝐵 − (𝑀‘𝐴)) = (𝑌 − (𝑁‘𝑋))) | 
| 24 | 1, 2, 5, 4, 8, 11, 13, 16, 23 | tgcgrcomlr 28489 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐵) = ((𝑁‘𝑋) − 𝑌)) | 
| 25 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp2 28530 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝑌 − 𝑍)) | 
| 26 | 1, 2, 5, 6, 7, 4, 8, 9, 10 | mirbtwn 28667 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑀‘𝐴)𝐼𝐴)) | 
| 27 | 1, 6, 5, 4, 11, 10, 8, 26 | btwncolg1 28564 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((𝑀‘𝐴)𝐿𝐴) ∨ (𝑀‘𝐴) = 𝐴)) | 
| 28 | 1, 6, 5, 4, 11, 10, 8, 27 | colcom 28567 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐴𝐿(𝑀‘𝐴)) ∨ 𝐴 = (𝑀‘𝐴))) | 
| 29 | 1, 2, 5, 6, 7, 4, 3, 9, 14, 10, 8, 15, 13, 19 | mircgrextend 28691 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) | 
| 30 | 1, 2, 5, 4, 10, 11, 15, 16, 29 | tgcgrcomlr 28489 | . . . . 5 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐴) = ((𝑁‘𝑋) − 𝑋)) | 
| 31 | 1, 2, 3, 4, 10, 8, 11, 15, 13, 16, 19, 23, 30 | trgcgr 28525 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵(𝑀‘𝐴)”〉 ∼ 〈“𝑋𝑌(𝑁‘𝑋)”〉) | 
| 32 | 1, 2, 5, 3, 4, 10, 8, 12, 15, 13, 17, 18 | cgr3simp3 28531 | . . . . 5 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝑍 − 𝑋)) | 
| 33 | 1, 2, 5, 4, 12, 10, 17, 15, 32 | tgcgrcomlr 28489 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐶) = (𝑋 − 𝑍)) | 
| 34 | mirtrcgr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 35 | 1, 6, 5, 4, 10, 8, 11, 3, 15, 13, 2, 12, 16, 17, 28, 31, 33, 25, 34 | tgfscgr 28577 | . . 3 ⊢ (𝜑 → ((𝑀‘𝐴) − 𝐶) = ((𝑁‘𝑋) − 𝑍)) | 
| 36 | 1, 2, 5, 4, 11, 12, 16, 17, 35 | tgcgrcomlr 28489 | . 2 ⊢ (𝜑 → (𝐶 − (𝑀‘𝐴)) = (𝑍 − (𝑁‘𝑋))) | 
| 37 | 1, 2, 3, 4, 11, 8, 12, 16, 13, 17, 24, 25, 36 | trgcgr 28525 | 1 ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 〈“cs3 14882 Basecbs 17248 distcds 17307 TarskiGcstrkg 28436 Itvcitv 28442 LineGclng 28443 cgrGccgrg 28519 pInvGcmir 28661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-s2 14888 df-s3 14889 df-trkgc 28457 df-trkgb 28458 df-trkgcb 28459 df-trkg 28462 df-cgrg 28520 df-mir 28662 | 
| This theorem is referenced by: sacgr 28840 | 
| Copyright terms: Public domain | W3C validator |