Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > btwnhl1 | Structured version Visualization version GIF version |
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
btwnhl1.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) |
btwnhl1.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
btwnhl1.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
Ref | Expression |
---|---|
btwnhl1 | ⊢ (𝜑 → 𝐶(𝐾‘𝐴)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnhl1.3 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐴) | |
2 | btwnhl1.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | necomd 2996 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
4 | btwnhl1.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) | |
5 | 4 | orcd 870 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
6 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
7 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
8 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
9 | ishlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | ishlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | ishlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | hlln.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
13 | 6, 7, 8, 9, 10, 11, 12 | ishlg 27253 | . 2 ⊢ (𝜑 → (𝐶(𝐾‘𝐴)𝐵 ↔ (𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐴 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))) |
14 | 1, 3, 5, 13 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐶(𝐾‘𝐴)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5093 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 TarskiGcstrkg 27078 Itvcitv 27084 hlGchlg 27251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-hlg 27252 |
This theorem is referenced by: outpasch 27406 hlpasch 27407 lnopp2hpgb 27414 dfcgra2 27481 |
Copyright terms: Public domain | W3C validator |