MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl1 Structured version   Visualization version   GIF version

Theorem btwnhl1 28592
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl1.1 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
btwnhl1.2 (𝜑𝐴𝐵)
btwnhl1.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
btwnhl1 (𝜑𝐶(𝐾𝐴)𝐵)

Proof of Theorem btwnhl1
StepHypRef Expression
1 btwnhl1.3 . 2 (𝜑𝐶𝐴)
2 btwnhl1.2 . . 3 (𝜑𝐴𝐵)
32necomd 2980 . 2 (𝜑𝐵𝐴)
4 btwnhl1.1 . . 3 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
54orcd 873 . 2 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
6 ishlg.p . . 3 𝑃 = (Base‘𝐺)
7 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
8 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
9 ishlg.c . . 3 (𝜑𝐶𝑃)
10 ishlg.b . . 3 (𝜑𝐵𝑃)
11 ishlg.a . . 3 (𝜑𝐴𝑃)
12 hlln.1 . . 3 (𝜑𝐺 ∈ TarskiG)
136, 7, 8, 9, 10, 11, 12ishlg 28582 . 2 (𝜑 → (𝐶(𝐾𝐴)𝐵 ↔ (𝐶𝐴𝐵𝐴 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))))
141, 3, 5, 13mpbir3and 1343 1 (𝜑𝐶(𝐾𝐴)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  TarskiGcstrkg 28407  Itvcitv 28413  hlGchlg 28580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-hlg 28581
This theorem is referenced by:  outpasch  28735  hlpasch  28736  lnopp2hpgb  28743  dfcgra2  28810
  Copyright terms: Public domain W3C validator