![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwnhl1 | Structured version Visualization version GIF version |
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | β’ π = (BaseβπΊ) |
ishlg.i | β’ πΌ = (ItvβπΊ) |
ishlg.k | β’ πΎ = (hlGβπΊ) |
ishlg.a | β’ (π β π΄ β π) |
ishlg.b | β’ (π β π΅ β π) |
ishlg.c | β’ (π β πΆ β π) |
hlln.1 | β’ (π β πΊ β TarskiG) |
hltr.d | β’ (π β π· β π) |
btwnhl1.1 | β’ (π β πΆ β (π΄πΌπ΅)) |
btwnhl1.2 | β’ (π β π΄ β π΅) |
btwnhl1.3 | β’ (π β πΆ β π΄) |
Ref | Expression |
---|---|
btwnhl1 | β’ (π β πΆ(πΎβπ΄)π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnhl1.3 | . 2 β’ (π β πΆ β π΄) | |
2 | btwnhl1.2 | . . 3 β’ (π β π΄ β π΅) | |
3 | 2 | necomd 2995 | . 2 β’ (π β π΅ β π΄) |
4 | btwnhl1.1 | . . 3 β’ (π β πΆ β (π΄πΌπ΅)) | |
5 | 4 | orcd 870 | . 2 β’ (π β (πΆ β (π΄πΌπ΅) β¨ π΅ β (π΄πΌπΆ))) |
6 | ishlg.p | . . 3 β’ π = (BaseβπΊ) | |
7 | ishlg.i | . . 3 β’ πΌ = (ItvβπΊ) | |
8 | ishlg.k | . . 3 β’ πΎ = (hlGβπΊ) | |
9 | ishlg.c | . . 3 β’ (π β πΆ β π) | |
10 | ishlg.b | . . 3 β’ (π β π΅ β π) | |
11 | ishlg.a | . . 3 β’ (π β π΄ β π) | |
12 | hlln.1 | . . 3 β’ (π β πΊ β TarskiG) | |
13 | 6, 7, 8, 9, 10, 11, 12 | ishlg 28121 | . 2 β’ (π β (πΆ(πΎβπ΄)π΅ β (πΆ β π΄ β§ π΅ β π΄ β§ (πΆ β (π΄πΌπ΅) β¨ π΅ β (π΄πΌπΆ))))) |
14 | 1, 3, 5, 13 | mpbir3and 1341 | 1 β’ (π β πΆ(πΎβπ΄)π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 844 = wceq 1540 β wcel 2105 β wne 2939 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Basecbs 17149 TarskiGcstrkg 27946 Itvcitv 27952 hlGchlg 28119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-hlg 28120 |
This theorem is referenced by: outpasch 28274 hlpasch 28275 lnopp2hpgb 28282 dfcgra2 28349 |
Copyright terms: Public domain | W3C validator |