MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl2 Structured version   Visualization version   GIF version

Theorem btwnhl2 28489
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl1.1 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
btwnhl1.2 (𝜑𝐴𝐵)
btwnhl2.3 (𝜑𝐶𝐵)
Assertion
Ref Expression
btwnhl2 (𝜑𝐶(𝐾𝐵)𝐴)

Proof of Theorem btwnhl2
StepHypRef Expression
1 btwnhl2.3 . 2 (𝜑𝐶𝐵)
2 btwnhl1.2 . 2 (𝜑𝐴𝐵)
3 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
4 eqid 2725 . . . 4 (dist‘𝐺) = (dist‘𝐺)
5 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
6 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
7 ishlg.a . . . 4 (𝜑𝐴𝑃)
8 ishlg.c . . . 4 (𝜑𝐶𝑃)
9 ishlg.b . . . 4 (𝜑𝐵𝑃)
10 btwnhl1.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
113, 4, 5, 6, 7, 8, 9, 10tgbtwncom 28364 . . 3 (𝜑𝐶 ∈ (𝐵𝐼𝐴))
1211orcd 871 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
13 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
143, 5, 13, 8, 7, 9, 6ishlg 28478 . 2 (𝜑 → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
151, 2, 12, 14mpbir3and 1339 1 (𝜑𝐶(𝐾𝐵)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17183  distcds 17245  TarskiGcstrkg 28303  Itvcitv 28309  hlGchlg 28476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-trkgc 28324  df-trkgb 28325  df-trkgcb 28326  df-trkg 28329  df-hlg 28477
This theorem is referenced by:  hlpasch  28632
  Copyright terms: Public domain W3C validator