![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwnhl2 | Structured version Visualization version GIF version |
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | β’ π = (BaseβπΊ) |
ishlg.i | β’ πΌ = (ItvβπΊ) |
ishlg.k | β’ πΎ = (hlGβπΊ) |
ishlg.a | β’ (π β π΄ β π) |
ishlg.b | β’ (π β π΅ β π) |
ishlg.c | β’ (π β πΆ β π) |
hlln.1 | β’ (π β πΊ β TarskiG) |
hltr.d | β’ (π β π· β π) |
btwnhl1.1 | β’ (π β πΆ β (π΄πΌπ΅)) |
btwnhl1.2 | β’ (π β π΄ β π΅) |
btwnhl2.3 | β’ (π β πΆ β π΅) |
Ref | Expression |
---|---|
btwnhl2 | β’ (π β πΆ(πΎβπ΅)π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnhl2.3 | . 2 β’ (π β πΆ β π΅) | |
2 | btwnhl1.2 | . 2 β’ (π β π΄ β π΅) | |
3 | ishlg.p | . . . 4 β’ π = (BaseβπΊ) | |
4 | eqid 2730 | . . . 4 β’ (distβπΊ) = (distβπΊ) | |
5 | ishlg.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
6 | hlln.1 | . . . 4 β’ (π β πΊ β TarskiG) | |
7 | ishlg.a | . . . 4 β’ (π β π΄ β π) | |
8 | ishlg.c | . . . 4 β’ (π β πΆ β π) | |
9 | ishlg.b | . . . 4 β’ (π β π΅ β π) | |
10 | btwnhl1.1 | . . . 4 β’ (π β πΆ β (π΄πΌπ΅)) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgbtwncom 28006 | . . 3 β’ (π β πΆ β (π΅πΌπ΄)) |
12 | 11 | orcd 869 | . 2 β’ (π β (πΆ β (π΅πΌπ΄) β¨ π΄ β (π΅πΌπΆ))) |
13 | ishlg.k | . . 3 β’ πΎ = (hlGβπΊ) | |
14 | 3, 5, 13, 8, 7, 9, 6 | ishlg 28120 | . 2 β’ (π β (πΆ(πΎβπ΅)π΄ β (πΆ β π΅ β§ π΄ β π΅ β§ (πΆ β (π΅πΌπ΄) β¨ π΄ β (π΅πΌπΆ))))) |
15 | 1, 2, 12, 14 | mpbir3and 1340 | 1 β’ (π β πΆ(πΎβπ΅)π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 843 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 distcds 17210 TarskiGcstrkg 27945 Itvcitv 27951 hlGchlg 28118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-trkgc 27966 df-trkgb 27967 df-trkgcb 27968 df-trkg 27971 df-hlg 28119 |
This theorem is referenced by: hlpasch 28274 |
Copyright terms: Public domain | W3C validator |