| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > btwnhl2 | Structured version Visualization version GIF version | ||
| Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| btwnhl1.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) |
| btwnhl1.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| btwnhl2.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| btwnhl2 | ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnhl2.3 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
| 2 | btwnhl1.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | eqid 2729 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 5 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | btwnhl1.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgbtwncom 28468 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐴)) |
| 12 | 11 | orcd 873 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))) |
| 13 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 14 | 3, 5, 13, 8, 7, 9, 6 | ishlg 28582 | . 2 ⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐴 ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 15 | 1, 2, 12, 14 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 Itvcitv 28413 hlGchlg 28580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-trkgc 28428 df-trkgb 28429 df-trkgcb 28430 df-trkg 28433 df-hlg 28581 |
| This theorem is referenced by: hlpasch 28736 |
| Copyright terms: Public domain | W3C validator |