| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > btwnhl2 | Structured version Visualization version GIF version | ||
| Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| btwnhl1.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) |
| btwnhl1.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| btwnhl2.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| btwnhl2 | ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnhl2.3 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
| 2 | btwnhl1.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | eqid 2734 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 5 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | btwnhl1.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgbtwncom 28432 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐴)) |
| 12 | 11 | orcd 873 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))) |
| 13 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 14 | 3, 5, 13, 8, 7, 9, 6 | ishlg 28546 | . 2 ⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐴 ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 15 | 1, 2, 12, 14 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 distcds 17282 TarskiGcstrkg 28371 Itvcitv 28377 hlGchlg 28544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-trkgc 28392 df-trkgb 28393 df-trkgcb 28394 df-trkg 28397 df-hlg 28545 |
| This theorem is referenced by: hlpasch 28700 |
| Copyright terms: Public domain | W3C validator |