MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl2 Structured version   Visualization version   GIF version

Theorem btwnhl2 28557
Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl1.1 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
btwnhl1.2 (𝜑𝐴𝐵)
btwnhl2.3 (𝜑𝐶𝐵)
Assertion
Ref Expression
btwnhl2 (𝜑𝐶(𝐾𝐵)𝐴)

Proof of Theorem btwnhl2
StepHypRef Expression
1 btwnhl2.3 . 2 (𝜑𝐶𝐵)
2 btwnhl1.2 . 2 (𝜑𝐴𝐵)
3 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
4 eqid 2734 . . . 4 (dist‘𝐺) = (dist‘𝐺)
5 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
6 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
7 ishlg.a . . . 4 (𝜑𝐴𝑃)
8 ishlg.c . . . 4 (𝜑𝐶𝑃)
9 ishlg.b . . . 4 (𝜑𝐵𝑃)
10 btwnhl1.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
113, 4, 5, 6, 7, 8, 9, 10tgbtwncom 28432 . . 3 (𝜑𝐶 ∈ (𝐵𝐼𝐴))
1211orcd 873 . 2 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
13 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
143, 5, 13, 8, 7, 9, 6ishlg 28546 . 2 (𝜑 → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
151, 2, 12, 14mpbir3and 1342 1 (𝜑𝐶(𝐾𝐵)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17229  distcds 17282  TarskiGcstrkg 28371  Itvcitv 28377  hlGchlg 28544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-trkgc 28392  df-trkgb 28393  df-trkgcb 28394  df-trkg 28397  df-hlg 28545
This theorem is referenced by:  hlpasch  28700
  Copyright terms: Public domain W3C validator