| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > btwnhl2 | Structured version Visualization version GIF version | ||
| Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| btwnhl1.1 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) |
| btwnhl1.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| btwnhl2.3 | ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| btwnhl2 | ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnhl2.3 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) | |
| 2 | btwnhl1.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | ishlg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | eqid 2730 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 5 | ishlg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | btwnhl1.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgbtwncom 28421 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐴)) |
| 12 | 11 | orcd 873 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))) |
| 13 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 14 | 3, 5, 13, 8, 7, 9, 6 | ishlg 28535 | . 2 ⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐴 ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 15 | 1, 2, 12, 14 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 distcds 17235 TarskiGcstrkg 28360 Itvcitv 28366 hlGchlg 28533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-trkgc 28381 df-trkgb 28382 df-trkgcb 28383 df-trkg 28386 df-hlg 28534 |
| This theorem is referenced by: hlpasch 28689 |
| Copyright terms: Public domain | W3C validator |