|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ofval | Structured version Visualization version GIF version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) | 
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 | 
| ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | 
| ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | 
| Ref | Expression | 
|---|---|
| ofval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 7707 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) | 
| 9 | 8 | fveq1d 6907 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) | 
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) | 
| 11 | fveq2 6905 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | fveq2 6905 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 13 | 11, 12 | oveq12d 7450 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) | 
| 14 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 15 | ovex 7465 | . . . 4 ⊢ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 7015 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) | 
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) | 
| 18 | inss1 4236 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 19 | 5, 18 | eqsstrri 4030 | . . . . 5 ⊢ 𝑆 ⊆ 𝐴 | 
| 20 | 19 | sseli 3978 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) | 
| 21 | ofval.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 22 | 20, 21 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) | 
| 23 | inss2 4237 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 24 | 5, 23 | eqsstrri 4030 | . . . . 5 ⊢ 𝑆 ⊆ 𝐵 | 
| 25 | 24 | sseli 3978 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) | 
| 26 | ofval.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 27 | 25, 26 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) | 
| 28 | 22, 27 | oveq12d 7450 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) | 
| 29 | 10, 17, 28 | 3eqtrd 2780 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ↦ cmpt 5224 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 | 
| This theorem is referenced by: fnfvof 7715 offveq 7724 ofc1 7726 ofc2 7727 suppofss1d 8230 suppofss2d 8231 ofsubeq0 12264 ofnegsub 12265 ofsubge0 12266 seqof 14101 o1of2 15650 mndpsuppss 18779 gsumzaddlem 19940 pwspjmhmmgpd 20326 psrbagcon 21946 psrbagleadd1 21949 psrbagconf1o 21950 psrdi 21986 psrdir 21987 mplsubglem 22020 psdmplcl 22167 psdadd 22168 psdmul 22171 psdmvr 22174 matplusgcell 22440 matsubgcell 22441 rrxcph 25427 mbfaddlem 25696 i1faddlem 25729 i1fmullem 25730 itg1lea 25748 mbfi1flimlem 25758 itg2split 25785 itg2monolem1 25786 itg2addlem 25794 dvaddbr 25975 dvmulbr 25976 dvmulbrOLD 25977 plyaddlem1 26253 coeeulem 26264 coeaddlem 26289 dgradd2 26309 dgrcolem2 26315 ofmulrt 26324 plydivlem3 26338 plydivlem4 26339 plydiveu 26341 plyrem 26348 vieta1lem2 26354 elqaalem3 26364 qaa 26366 basellem7 27131 basellem9 27133 elrgspnlem1 33247 ply1degltdimlem 33674 circlemethhgt 34659 poimirlem1 37629 poimirlem2 37630 poimirlem6 37634 poimirlem7 37635 poimirlem10 37638 poimirlem11 37639 poimirlem12 37640 poimirlem17 37645 poimirlem20 37648 poimirlem23 37651 poimirlem29 37657 poimirlem31 37659 poimirlem32 37660 broucube 37662 itg2addnclem3 37681 itg2addnc 37682 ftc1anclem5 37705 lfladdcl 39073 ldualvaddval 39133 ofun 42277 mplmapghm 42571 fsuppind 42605 dgrsub2 43152 mpaaeu 43167 caofcan 44347 ofmul12 44349 ofdivrec 44350 ofdivcan4 44351 ofdivdiv2 44352 binomcxplemrat 44374 binomcxplemnotnn0 44380 amgmwlem 49376 | 
| Copyright terms: Public domain | W3C validator |