| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofval | Structured version Visualization version GIF version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
| Ref | Expression |
|---|---|
| ofval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 7662 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | 8 | fveq1d 6860 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 11 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 13 | 11, 12 | oveq12d 7405 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 14 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 15 | ovex 7420 | . . . 4 ⊢ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6968 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 18 | inss1 4200 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 19 | 5, 18 | eqsstrri 3994 | . . . . 5 ⊢ 𝑆 ⊆ 𝐴 |
| 20 | 19 | sseli 3942 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) |
| 21 | ofval.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 22 | 20, 21 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
| 23 | inss2 4201 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 24 | 5, 23 | eqsstrri 3994 | . . . . 5 ⊢ 𝑆 ⊆ 𝐵 |
| 25 | 24 | sseli 3942 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) |
| 26 | ofval.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 27 | 25, 26 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
| 28 | 22, 27 | oveq12d 7405 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
| 29 | 10, 17, 28 | 3eqtrd 2768 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ↦ cmpt 5188 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 |
| This theorem is referenced by: fnfvof 7670 offveq 7679 ofc1 7681 ofc2 7682 suppofss1d 8183 suppofss2d 8184 ofsubeq0 12183 ofnegsub 12184 ofsubge0 12185 seqof 14024 o1of2 15579 mndpsuppss 18692 gsumzaddlem 19851 pwspjmhmmgpd 20237 psrbagcon 21834 psrbagleadd1 21837 psrbagconf1o 21838 psrdi 21874 psrdir 21875 mplsubglem 21908 psdmplcl 22049 psdadd 22050 psdmul 22053 psdmvr 22056 matplusgcell 22320 matsubgcell 22321 rrxcph 25292 mbfaddlem 25561 i1faddlem 25594 i1fmullem 25595 itg1lea 25613 mbfi1flimlem 25623 itg2split 25650 itg2monolem1 25651 itg2addlem 25659 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 plyaddlem1 26118 coeeulem 26129 coeaddlem 26154 dgradd2 26174 dgrcolem2 26180 ofmulrt 26189 plydivlem3 26203 plydivlem4 26204 plydiveu 26206 plyrem 26213 vieta1lem2 26219 elqaalem3 26229 qaa 26231 basellem7 26997 basellem9 26999 elrgspnlem1 33193 ply1degltdimlem 33618 circlemethhgt 34634 poimirlem1 37615 poimirlem2 37616 poimirlem6 37620 poimirlem7 37621 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem17 37631 poimirlem20 37634 poimirlem23 37637 poimirlem29 37643 poimirlem31 37645 poimirlem32 37646 broucube 37648 itg2addnclem3 37667 itg2addnc 37668 ftc1anclem5 37691 lfladdcl 39064 ldualvaddval 39124 ofun 42224 mplmapghm 42544 fsuppind 42578 dgrsub2 43124 mpaaeu 43139 caofcan 44312 ofmul12 44314 ofdivrec 44315 ofdivcan4 44316 ofdivdiv2 44317 binomcxplemrat 44339 binomcxplemnotnn0 44345 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |