![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofval | Structured version Visualization version GIF version |
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
Ref | Expression |
---|---|
ofval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
6 | eqidd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
7 | eqidd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | offval 7723 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
9 | 8 | fveq1d 6922 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
11 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
12 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
13 | 11, 12 | oveq12d 7466 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
14 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
15 | ovex 7481 | . . . 4 ⊢ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V | |
16 | 13, 14, 15 | fvmpt 7029 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
18 | inss1 4258 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
19 | 5, 18 | eqsstrri 4044 | . . . . 5 ⊢ 𝑆 ⊆ 𝐴 |
20 | 19 | sseli 4004 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) |
21 | ofval.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
22 | 20, 21 | sylan2 592 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
23 | inss2 4259 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
24 | 5, 23 | eqsstrri 4044 | . . . . 5 ⊢ 𝑆 ⊆ 𝐵 |
25 | 24 | sseli 4004 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) |
26 | ofval.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
27 | 25, 26 | sylan2 592 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
28 | 22, 27 | oveq12d 7466 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
29 | 10, 17, 28 | 3eqtrd 2784 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ↦ cmpt 5249 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 |
This theorem is referenced by: fnfvof 7731 offveq 7739 ofc1 7741 ofc2 7742 suppofss1d 8245 suppofss2d 8246 ofsubeq0 12290 ofnegsub 12291 ofsubge0 12292 seqof 14110 o1of2 15659 gsumzaddlem 19963 pwspjmhmmgpd 20351 psrbagcon 21968 psrbagleadd1 21971 psrbagconf1o 21972 psrdi 22008 psrdir 22009 mplsubglem 22042 psdmplcl 22189 psdadd 22190 psdmul 22193 matplusgcell 22460 matsubgcell 22461 rrxcph 25445 mbfaddlem 25714 i1faddlem 25747 i1fmullem 25748 itg1lea 25767 mbfi1flimlem 25777 itg2split 25804 itg2monolem1 25805 itg2addlem 25813 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 plyaddlem1 26272 coeeulem 26283 coeaddlem 26308 dgradd2 26328 dgrcolem2 26334 ofmulrt 26341 plydivlem3 26355 plydivlem4 26356 plydiveu 26358 plyrem 26365 vieta1lem2 26371 elqaalem3 26381 qaa 26383 basellem7 27148 basellem9 27150 ply1degltdimlem 33635 circlemethhgt 34620 poimirlem1 37581 poimirlem2 37582 poimirlem6 37586 poimirlem7 37587 poimirlem10 37590 poimirlem11 37591 poimirlem12 37592 poimirlem17 37597 poimirlem20 37600 poimirlem23 37603 poimirlem29 37609 poimirlem31 37611 poimirlem32 37612 broucube 37614 itg2addnclem3 37633 itg2addnc 37634 ftc1anclem5 37657 lfladdcl 39027 ldualvaddval 39087 ofun 42231 mplmapghm 42511 fsuppind 42545 dgrsub2 43092 mpaaeu 43107 caofcan 44292 ofmul12 44294 ofdivrec 44295 ofdivcan4 44296 ofdivdiv2 44297 binomcxplemrat 44319 binomcxplemnotnn0 44325 mndpsuppss 48096 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |