| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofval | Structured version Visualization version GIF version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
| Ref | Expression |
|---|---|
| ofval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 7619 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | 8 | fveq1d 6824 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 11 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 13 | 11, 12 | oveq12d 7364 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 14 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 15 | ovex 7379 | . . . 4 ⊢ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6929 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 18 | inss1 4187 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 19 | 5, 18 | eqsstrri 3982 | . . . . 5 ⊢ 𝑆 ⊆ 𝐴 |
| 20 | 19 | sseli 3930 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) |
| 21 | ofval.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 22 | 20, 21 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
| 23 | inss2 4188 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 24 | 5, 23 | eqsstrri 3982 | . . . . 5 ⊢ 𝑆 ⊆ 𝐵 |
| 25 | 24 | sseli 3930 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) |
| 26 | ofval.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 27 | 25, 26 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
| 28 | 22, 27 | oveq12d 7364 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
| 29 | 10, 17, 28 | 3eqtrd 2770 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ↦ cmpt 5172 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 |
| This theorem is referenced by: fnfvof 7627 offveq 7636 ofc1 7638 ofc2 7639 suppofss1d 8134 suppofss2d 8135 ofsubeq0 12122 ofnegsub 12123 ofsubge0 12124 seqof 13966 o1of2 15520 mndpsuppss 18673 gsumzaddlem 19834 pwspjmhmmgpd 20247 psrbagcon 21863 psrbagleadd1 21866 psrbagconf1o 21867 psrdi 21903 psrdir 21904 mplsubglem 21937 psdmplcl 22078 psdadd 22079 psdmul 22082 psdmvr 22085 matplusgcell 22349 matsubgcell 22350 rrxcph 25320 mbfaddlem 25589 i1faddlem 25622 i1fmullem 25623 itg1lea 25641 mbfi1flimlem 25651 itg2split 25678 itg2monolem1 25679 itg2addlem 25687 dvaddbr 25868 dvmulbr 25869 dvmulbrOLD 25870 plyaddlem1 26146 coeeulem 26157 coeaddlem 26182 dgradd2 26202 dgrcolem2 26208 ofmulrt 26217 plydivlem3 26231 plydivlem4 26232 plydiveu 26234 plyrem 26241 vieta1lem2 26247 elqaalem3 26257 qaa 26259 basellem7 27025 basellem9 27027 elrgspnlem1 33207 ply1degltdimlem 33633 circlemethhgt 34654 poimirlem1 37667 poimirlem2 37668 poimirlem6 37672 poimirlem7 37673 poimirlem10 37676 poimirlem11 37677 poimirlem12 37678 poimirlem17 37683 poimirlem20 37686 poimirlem23 37689 poimirlem29 37695 poimirlem31 37697 poimirlem32 37698 broucube 37700 itg2addnclem3 37719 itg2addnc 37720 ftc1anclem5 37743 lfladdcl 39116 ldualvaddval 39176 ofun 42275 mplmapghm 42595 fsuppind 42629 dgrsub2 43174 mpaaeu 43189 caofcan 44362 ofmul12 44364 ofdivrec 44365 ofdivcan4 44366 ofdivdiv2 44367 binomcxplemrat 44389 binomcxplemnotnn0 44395 amgmwlem 49840 |
| Copyright terms: Public domain | W3C validator |