MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofval Structured version   Visualization version   GIF version

Theorem ofval 7687
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofval ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2737 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2737 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7685 . . . 4 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 6883 . . 3 (𝜑 → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 480 . 2 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 fveq2 6881 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
12 fveq2 6881 . . . . 5 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1311, 12oveq12d 7428 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
14 eqid 2736 . . . 4 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
15 ovex 7443 . . . 4 ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V
1613, 14, 15fvmpt 6991 . . 3 (𝑋𝑆 → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
1716adantl 481 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
18 inss1 4217 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
195, 18eqsstrri 4011 . . . . 5 𝑆𝐴
2019sseli 3959 . . . 4 (𝑋𝑆𝑋𝐴)
21 ofval.6 . . . 4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2220, 21sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 4218 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 4011 . . . . 5 𝑆𝐵
2524sseli 3959 . . . 4 (𝑋𝑆𝑋𝐵)
26 ofval.7 . . . 4 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2725, 26sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2822, 27oveq12d 7428 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
2910, 17, 283eqtrd 2775 1 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3930  cmpt 5206   Fn wfn 6531  cfv 6536  (class class class)co 7410  f cof 7674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676
This theorem is referenced by:  fnfvof  7693  offveq  7702  ofc1  7704  ofc2  7705  suppofss1d  8208  suppofss2d  8209  ofsubeq0  12242  ofnegsub  12243  ofsubge0  12244  seqof  14082  o1of2  15634  mndpsuppss  18748  gsumzaddlem  19907  pwspjmhmmgpd  20293  psrbagcon  21890  psrbagleadd1  21893  psrbagconf1o  21894  psrdi  21930  psrdir  21931  mplsubglem  21964  psdmplcl  22105  psdadd  22106  psdmul  22109  psdmvr  22112  matplusgcell  22376  matsubgcell  22377  rrxcph  25349  mbfaddlem  25618  i1faddlem  25651  i1fmullem  25652  itg1lea  25670  mbfi1flimlem  25680  itg2split  25707  itg2monolem1  25708  itg2addlem  25716  dvaddbr  25897  dvmulbr  25898  dvmulbrOLD  25899  plyaddlem1  26175  coeeulem  26186  coeaddlem  26211  dgradd2  26231  dgrcolem2  26237  ofmulrt  26246  plydivlem3  26260  plydivlem4  26261  plydiveu  26263  plyrem  26270  vieta1lem2  26276  elqaalem3  26286  qaa  26288  basellem7  27054  basellem9  27056  elrgspnlem1  33242  ply1degltdimlem  33667  circlemethhgt  34680  poimirlem1  37650  poimirlem2  37651  poimirlem6  37655  poimirlem7  37656  poimirlem10  37659  poimirlem11  37660  poimirlem12  37661  poimirlem17  37666  poimirlem20  37669  poimirlem23  37672  poimirlem29  37678  poimirlem31  37680  poimirlem32  37681  broucube  37683  itg2addnclem3  37702  itg2addnc  37703  ftc1anclem5  37726  lfladdcl  39094  ldualvaddval  39154  ofun  42254  mplmapghm  42546  fsuppind  42580  dgrsub2  43126  mpaaeu  43141  caofcan  44314  ofmul12  44316  ofdivrec  44317  ofdivcan4  44318  ofdivdiv2  44319  binomcxplemrat  44341  binomcxplemnotnn0  44347  amgmwlem  49633
  Copyright terms: Public domain W3C validator