MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofval Structured version   Visualization version   GIF version

Theorem ofval 7628
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofval ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2730 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2730 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7626 . . . 4 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 6828 . . 3 (𝜑 → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 480 . 2 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 fveq2 6826 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
12 fveq2 6826 . . . . 5 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1311, 12oveq12d 7371 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
14 eqid 2729 . . . 4 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
15 ovex 7386 . . . 4 ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V
1613, 14, 15fvmpt 6934 . . 3 (𝑋𝑆 → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
1716adantl 481 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
18 inss1 4190 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
195, 18eqsstrri 3985 . . . . 5 𝑆𝐴
2019sseli 3933 . . . 4 (𝑋𝑆𝑋𝐴)
21 ofval.6 . . . 4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2220, 21sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 4191 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 3985 . . . . 5 𝑆𝐵
2524sseli 3933 . . . 4 (𝑋𝑆𝑋𝐵)
26 ofval.7 . . . 4 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2725, 26sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2822, 27oveq12d 7371 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
2910, 17, 283eqtrd 2768 1 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3904  cmpt 5176   Fn wfn 6481  cfv 6486  (class class class)co 7353  f cof 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617
This theorem is referenced by:  fnfvof  7634  offveq  7643  ofc1  7645  ofc2  7646  suppofss1d  8144  suppofss2d  8145  ofsubeq0  12143  ofnegsub  12144  ofsubge0  12145  seqof  13984  o1of2  15538  mndpsuppss  18657  gsumzaddlem  19818  pwspjmhmmgpd  20231  psrbagcon  21850  psrbagleadd1  21853  psrbagconf1o  21854  psrdi  21890  psrdir  21891  mplsubglem  21924  psdmplcl  22065  psdadd  22066  psdmul  22069  psdmvr  22072  matplusgcell  22336  matsubgcell  22337  rrxcph  25308  mbfaddlem  25577  i1faddlem  25610  i1fmullem  25611  itg1lea  25629  mbfi1flimlem  25639  itg2split  25666  itg2monolem1  25667  itg2addlem  25675  dvaddbr  25856  dvmulbr  25857  dvmulbrOLD  25858  plyaddlem1  26134  coeeulem  26145  coeaddlem  26170  dgradd2  26190  dgrcolem2  26196  ofmulrt  26205  plydivlem3  26219  plydivlem4  26220  plydiveu  26222  plyrem  26229  vieta1lem2  26235  elqaalem3  26245  qaa  26247  basellem7  27013  basellem9  27015  elrgspnlem1  33195  ply1degltdimlem  33597  circlemethhgt  34613  poimirlem1  37603  poimirlem2  37604  poimirlem6  37608  poimirlem7  37609  poimirlem10  37612  poimirlem11  37613  poimirlem12  37614  poimirlem17  37619  poimirlem20  37622  poimirlem23  37625  poimirlem29  37631  poimirlem31  37633  poimirlem32  37634  broucube  37636  itg2addnclem3  37655  itg2addnc  37656  ftc1anclem5  37679  lfladdcl  39052  ldualvaddval  39112  ofun  42212  mplmapghm  42532  fsuppind  42566  dgrsub2  43111  mpaaeu  43126  caofcan  44299  ofmul12  44301  ofdivrec  44302  ofdivcan4  44303  ofdivdiv2  44304  binomcxplemrat  44326  binomcxplemnotnn0  44332  amgmwlem  49791
  Copyright terms: Public domain W3C validator