| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofval | Structured version Visualization version GIF version | ||
| Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
| ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
| Ref | Expression |
|---|---|
| ofval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 6 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 7 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | offval 7626 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 9 | 8 | fveq1d 6828 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
| 11 | fveq2 6826 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | fveq2 6826 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 13 | 11, 12 | oveq12d 7371 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 14 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 15 | ovex 7386 | . . . 4 ⊢ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6934 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 18 | inss1 4190 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 19 | 5, 18 | eqsstrri 3985 | . . . . 5 ⊢ 𝑆 ⊆ 𝐴 |
| 20 | 19 | sseli 3933 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) |
| 21 | ofval.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
| 22 | 20, 21 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
| 23 | inss2 4191 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 24 | 5, 23 | eqsstrri 3985 | . . . . 5 ⊢ 𝑆 ⊆ 𝐵 |
| 25 | 24 | sseli 3933 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) |
| 26 | ofval.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
| 27 | 25, 26 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
| 28 | 22, 27 | oveq12d 7371 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
| 29 | 10, 17, 28 | 3eqtrd 2768 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ↦ cmpt 5176 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 |
| This theorem is referenced by: fnfvof 7634 offveq 7643 ofc1 7645 ofc2 7646 suppofss1d 8144 suppofss2d 8145 ofsubeq0 12143 ofnegsub 12144 ofsubge0 12145 seqof 13984 o1of2 15538 mndpsuppss 18657 gsumzaddlem 19818 pwspjmhmmgpd 20231 psrbagcon 21850 psrbagleadd1 21853 psrbagconf1o 21854 psrdi 21890 psrdir 21891 mplsubglem 21924 psdmplcl 22065 psdadd 22066 psdmul 22069 psdmvr 22072 matplusgcell 22336 matsubgcell 22337 rrxcph 25308 mbfaddlem 25577 i1faddlem 25610 i1fmullem 25611 itg1lea 25629 mbfi1flimlem 25639 itg2split 25666 itg2monolem1 25667 itg2addlem 25675 dvaddbr 25856 dvmulbr 25857 dvmulbrOLD 25858 plyaddlem1 26134 coeeulem 26145 coeaddlem 26170 dgradd2 26190 dgrcolem2 26196 ofmulrt 26205 plydivlem3 26219 plydivlem4 26220 plydiveu 26222 plyrem 26229 vieta1lem2 26235 elqaalem3 26245 qaa 26247 basellem7 27013 basellem9 27015 elrgspnlem1 33195 ply1degltdimlem 33597 circlemethhgt 34613 poimirlem1 37603 poimirlem2 37604 poimirlem6 37608 poimirlem7 37609 poimirlem10 37612 poimirlem11 37613 poimirlem12 37614 poimirlem17 37619 poimirlem20 37622 poimirlem23 37625 poimirlem29 37631 poimirlem31 37633 poimirlem32 37634 broucube 37636 itg2addnclem3 37655 itg2addnc 37656 ftc1anclem5 37679 lfladdcl 39052 ldualvaddval 39112 ofun 42212 mplmapghm 42532 fsuppind 42566 dgrsub2 43111 mpaaeu 43126 caofcan 44299 ofmul12 44301 ofdivrec 44302 ofdivcan4 44303 ofdivdiv2 44304 binomcxplemrat 44326 binomcxplemnotnn0 44332 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |