MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofval Structured version   Visualization version   GIF version

Theorem ofval 7709
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofval ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2737 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2737 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7707 . . . 4 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 6907 . . 3 (𝜑 → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 480 . 2 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 fveq2 6905 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
12 fveq2 6905 . . . . 5 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1311, 12oveq12d 7450 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
14 eqid 2736 . . . 4 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
15 ovex 7465 . . . 4 ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V
1613, 14, 15fvmpt 7015 . . 3 (𝑋𝑆 → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
1716adantl 481 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
18 inss1 4236 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
195, 18eqsstrri 4030 . . . . 5 𝑆𝐴
2019sseli 3978 . . . 4 (𝑋𝑆𝑋𝐴)
21 ofval.6 . . . 4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2220, 21sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 4237 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 4030 . . . . 5 𝑆𝐵
2524sseli 3978 . . . 4 (𝑋𝑆𝑋𝐵)
26 ofval.7 . . . 4 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2725, 26sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2822, 27oveq12d 7450 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
2910, 17, 283eqtrd 2780 1 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cin 3949  cmpt 5224   Fn wfn 6555  cfv 6560  (class class class)co 7432  f cof 7696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698
This theorem is referenced by:  fnfvof  7715  offveq  7724  ofc1  7726  ofc2  7727  suppofss1d  8230  suppofss2d  8231  ofsubeq0  12264  ofnegsub  12265  ofsubge0  12266  seqof  14101  o1of2  15650  mndpsuppss  18779  gsumzaddlem  19940  pwspjmhmmgpd  20326  psrbagcon  21946  psrbagleadd1  21949  psrbagconf1o  21950  psrdi  21986  psrdir  21987  mplsubglem  22020  psdmplcl  22167  psdadd  22168  psdmul  22171  psdmvr  22174  matplusgcell  22440  matsubgcell  22441  rrxcph  25427  mbfaddlem  25696  i1faddlem  25729  i1fmullem  25730  itg1lea  25748  mbfi1flimlem  25758  itg2split  25785  itg2monolem1  25786  itg2addlem  25794  dvaddbr  25975  dvmulbr  25976  dvmulbrOLD  25977  plyaddlem1  26253  coeeulem  26264  coeaddlem  26289  dgradd2  26309  dgrcolem2  26315  ofmulrt  26324  plydivlem3  26338  plydivlem4  26339  plydiveu  26341  plyrem  26348  vieta1lem2  26354  elqaalem3  26364  qaa  26366  basellem7  27131  basellem9  27133  elrgspnlem1  33247  ply1degltdimlem  33674  circlemethhgt  34659  poimirlem1  37629  poimirlem2  37630  poimirlem6  37634  poimirlem7  37635  poimirlem10  37638  poimirlem11  37639  poimirlem12  37640  poimirlem17  37645  poimirlem20  37648  poimirlem23  37651  poimirlem29  37657  poimirlem31  37659  poimirlem32  37660  broucube  37662  itg2addnclem3  37681  itg2addnc  37682  ftc1anclem5  37705  lfladdcl  39073  ldualvaddval  39133  ofun  42277  mplmapghm  42571  fsuppind  42605  dgrsub2  43152  mpaaeu  43167  caofcan  44347  ofmul12  44349  ofdivrec  44350  ofdivcan4  44351  ofdivdiv2  44352  binomcxplemrat  44374  binomcxplemnotnn0  44380  amgmwlem  49376
  Copyright terms: Public domain W3C validator