MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofval Structured version   Visualization version   GIF version

Theorem ofval 7685
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofval ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2732 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2732 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7683 . . . 4 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 6893 . . 3 (𝜑 → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 480 . 2 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 fveq2 6891 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
12 fveq2 6891 . . . . 5 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1311, 12oveq12d 7430 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
14 eqid 2731 . . . 4 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
15 ovex 7445 . . . 4 ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V
1613, 14, 15fvmpt 6998 . . 3 (𝑋𝑆 → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
1716adantl 481 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
18 inss1 4228 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
195, 18eqsstrri 4017 . . . . 5 𝑆𝐴
2019sseli 3978 . . . 4 (𝑋𝑆𝑋𝐴)
21 ofval.6 . . . 4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2220, 21sylan2 592 . . 3 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 4229 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 4017 . . . . 5 𝑆𝐵
2524sseli 3978 . . . 4 (𝑋𝑆𝑋𝐵)
26 ofval.7 . . . 4 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2725, 26sylan2 592 . . 3 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2822, 27oveq12d 7430 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
2910, 17, 283eqtrd 2775 1 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cin 3947  cmpt 5231   Fn wfn 6538  cfv 6543  (class class class)co 7412  f cof 7672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674
This theorem is referenced by:  fnfvof  7691  offveq  7698  ofc1  7700  ofc2  7701  suppofss1d  8195  suppofss2d  8196  ofsubeq0  12216  ofnegsub  12217  ofsubge0  12218  seqof  14032  o1of2  15564  gsumzaddlem  19837  pwspjmhmmgpd  20223  psrbagcon  21793  psrbagconOLD  21794  psrbagconf1o  21799  psrbagconf1oOLD  21800  psrdi  21837  psrdir  21838  mplsubglem  21869  psdmplcl  22014  psdadd  22015  matplusgcell  22255  matsubgcell  22256  rrxcph  25240  mbfaddlem  25509  i1faddlem  25542  i1fmullem  25543  itg1lea  25562  mbfi1flimlem  25572  itg2split  25599  itg2monolem1  25600  itg2addlem  25608  dvaddbr  25788  dvmulbr  25789  dvmulbrOLD  25790  plyaddlem1  26065  coeeulem  26076  coeaddlem  26101  dgradd2  26121  dgrcolem2  26127  ofmulrt  26134  plydivlem3  26147  plydivlem4  26148  plydiveu  26150  plyrem  26157  vieta1lem2  26163  elqaalem3  26173  qaa  26175  basellem7  26932  basellem9  26934  ply1degltdimlem  33161  circlemethhgt  34119  poimirlem1  36953  poimirlem2  36954  poimirlem6  36958  poimirlem7  36959  poimirlem10  36962  poimirlem11  36963  poimirlem12  36964  poimirlem17  36969  poimirlem20  36972  poimirlem23  36975  poimirlem29  36981  poimirlem31  36983  poimirlem32  36984  broucube  36986  itg2addnclem3  37005  itg2addnc  37006  ftc1anclem5  37029  lfladdcl  38405  ldualvaddval  38465  ofun  41525  mplmapghm  41591  fsuppind  41625  dgrsub2  42340  mpaaeu  42355  caofcan  43545  ofmul12  43547  ofdivrec  43548  ofdivcan4  43549  ofdivdiv2  43550  binomcxplemrat  43572  binomcxplemnotnn0  43578  mndpsuppss  47210  amgmwlem  48011
  Copyright terms: Public domain W3C validator