![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofval | Structured version Visualization version GIF version |
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
ofval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
ofval.7 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) |
Ref | Expression |
---|---|
ofval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.2 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offval.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | offval.4 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | offval.5 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
6 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
7 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | offval 7706 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
9 | 8 | fveq1d 6909 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋)) |
11 | fveq2 6907 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
12 | fveq2 6907 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
13 | 11, 12 | oveq12d 7449 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
14 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
15 | ovex 7464 | . . . 4 ⊢ ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) ∈ V | |
16 | 13, 14, 15 | fvmpt 7016 | . . 3 ⊢ (𝑋 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
18 | inss1 4245 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
19 | 5, 18 | eqsstrri 4031 | . . . . 5 ⊢ 𝑆 ⊆ 𝐴 |
20 | 19 | sseli 3991 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐴) |
21 | ofval.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
22 | 20, 21 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) = 𝐶) |
23 | inss2 4246 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
24 | 5, 23 | eqsstrri 4031 | . . . . 5 ⊢ 𝑆 ⊆ 𝐵 |
25 | 24 | sseli 3991 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵) |
26 | ofval.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐺‘𝑋) = 𝐷) | |
27 | 25, 26 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑋) = 𝐷) |
28 | 22, 27 | oveq12d 7449 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹‘𝑋)𝑅(𝐺‘𝑋)) = (𝐶𝑅𝐷)) |
29 | 10, 17, 28 | 3eqtrd 2779 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ↦ cmpt 5231 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 |
This theorem is referenced by: fnfvof 7714 offveq 7723 ofc1 7725 ofc2 7726 suppofss1d 8228 suppofss2d 8229 ofsubeq0 12261 ofnegsub 12262 ofsubge0 12263 seqof 14097 o1of2 15646 mndpsuppss 18791 gsumzaddlem 19954 pwspjmhmmgpd 20342 psrbagcon 21963 psrbagleadd1 21966 psrbagconf1o 21967 psrdi 22003 psrdir 22004 mplsubglem 22037 psdmplcl 22184 psdadd 22185 psdmul 22188 matplusgcell 22455 matsubgcell 22456 rrxcph 25440 mbfaddlem 25709 i1faddlem 25742 i1fmullem 25743 itg1lea 25762 mbfi1flimlem 25772 itg2split 25799 itg2monolem1 25800 itg2addlem 25808 dvaddbr 25989 dvmulbr 25990 dvmulbrOLD 25991 plyaddlem1 26267 coeeulem 26278 coeaddlem 26303 dgradd2 26323 dgrcolem2 26329 ofmulrt 26338 plydivlem3 26352 plydivlem4 26353 plydiveu 26355 plyrem 26362 vieta1lem2 26368 elqaalem3 26378 qaa 26380 basellem7 27145 basellem9 27147 elrgspnlem1 33232 ply1degltdimlem 33650 circlemethhgt 34637 poimirlem1 37608 poimirlem2 37609 poimirlem6 37613 poimirlem7 37614 poimirlem10 37617 poimirlem11 37618 poimirlem12 37619 poimirlem17 37624 poimirlem20 37627 poimirlem23 37630 poimirlem29 37636 poimirlem31 37638 poimirlem32 37639 broucube 37641 itg2addnclem3 37660 itg2addnc 37661 ftc1anclem5 37684 lfladdcl 39053 ldualvaddval 39113 ofun 42256 mplmapghm 42543 fsuppind 42577 dgrsub2 43124 mpaaeu 43139 caofcan 44319 ofmul12 44321 ofdivrec 44322 ofdivcan4 44323 ofdivdiv2 44324 binomcxplemrat 44346 binomcxplemnotnn0 44352 amgmwlem 49033 |
Copyright terms: Public domain | W3C validator |