MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofval Structured version   Visualization version   GIF version

Theorem ofval 7629
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofval ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))

Proof of Theorem ofval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . 5 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . 5 (𝜑𝐴𝑉)
4 offval.4 . . . . 5 (𝜑𝐵𝑊)
5 offval.5 . . . . 5 (𝐴𝐵) = 𝑆
6 eqidd 2734 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2734 . . . . 5 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7offval 7627 . . . 4 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
98fveq1d 6832 . . 3 (𝜑 → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
109adantr 480 . 2 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋))
11 fveq2 6830 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
12 fveq2 6830 . . . . 5 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1311, 12oveq12d 7372 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥)) = ((𝐹𝑋)𝑅(𝐺𝑋)))
14 eqid 2733 . . . 4 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
15 ovex 7387 . . . 4 ((𝐹𝑋)𝑅(𝐺𝑋)) ∈ V
1613, 14, 15fvmpt 6937 . . 3 (𝑋𝑆 → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
1716adantl 481 . 2 ((𝜑𝑋𝑆) → ((𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
18 inss1 4186 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
195, 18eqsstrri 3978 . . . . 5 𝑆𝐴
2019sseli 3926 . . . 4 (𝑋𝑆𝑋𝐴)
21 ofval.6 . . . 4 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2220, 21sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 4187 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstrri 3978 . . . . 5 𝑆𝐵
2524sseli 3926 . . . 4 (𝑋𝑆𝑋𝐵)
26 ofval.7 . . . 4 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2725, 26sylan2 593 . . 3 ((𝜑𝑋𝑆) → (𝐺𝑋) = 𝐷)
2822, 27oveq12d 7372 . 2 ((𝜑𝑋𝑆) → ((𝐹𝑋)𝑅(𝐺𝑋)) = (𝐶𝑅𝐷))
2910, 17, 283eqtrd 2772 1 ((𝜑𝑋𝑆) → ((𝐹f 𝑅𝐺)‘𝑋) = (𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897  cmpt 5176   Fn wfn 6483  cfv 6488  (class class class)co 7354  f cof 7616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618
This theorem is referenced by:  fnfvof  7635  offveq  7644  ofc1  7646  ofc2  7647  suppofss1d  8142  suppofss2d  8143  ofsubeq0  12131  ofnegsub  12132  ofsubge0  12133  seqof  13970  o1of2  15524  mndpsuppss  18677  gsumzaddlem  19837  pwspjmhmmgpd  20250  psrbagcon  21866  psrbagleadd1  21869  psrbagconf1o  21870  psrdi  21905  psrdir  21906  mplsubglem  21939  psdmplcl  22080  psdadd  22081  psdmul  22084  psdmvr  22087  matplusgcell  22351  matsubgcell  22352  rrxcph  25322  mbfaddlem  25591  i1faddlem  25624  i1fmullem  25625  itg1lea  25643  mbfi1flimlem  25653  itg2split  25680  itg2monolem1  25681  itg2addlem  25689  dvaddbr  25870  dvmulbr  25871  dvmulbrOLD  25872  plyaddlem1  26148  coeeulem  26159  coeaddlem  26184  dgradd2  26204  dgrcolem2  26210  ofmulrt  26219  plydivlem3  26233  plydivlem4  26234  plydiveu  26236  plyrem  26243  vieta1lem2  26249  elqaalem3  26259  qaa  26261  basellem7  27027  basellem9  27029  elrgspnlem1  33218  ply1degltdimlem  33658  circlemethhgt  34679  poimirlem1  37684  poimirlem2  37685  poimirlem6  37689  poimirlem7  37690  poimirlem10  37693  poimirlem11  37694  poimirlem12  37695  poimirlem17  37700  poimirlem20  37703  poimirlem23  37706  poimirlem29  37712  poimirlem31  37714  poimirlem32  37715  broucube  37717  itg2addnclem3  37736  itg2addnc  37737  ftc1anclem5  37760  lfladdcl  39193  ldualvaddval  39253  ofun  42357  mplmapghm  42677  fsuppind  42711  dgrsub2  43255  mpaaeu  43270  caofcan  44443  ofmul12  44445  ofdivrec  44446  ofdivcan4  44447  ofdivdiv2  44448  binomcxplemrat  44470  binomcxplemnotnn0  44476  amgmwlem  49930
  Copyright terms: Public domain W3C validator