Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > offn | Structured version Visualization version GIF version |
Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
Ref | Expression |
---|---|
offn | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7340 | . . 3 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V | |
2 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
3 | 1, 2 | fnmpti 6606 | . 2 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆 |
4 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
6 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | offval.5 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
9 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
10 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
11 | 4, 5, 6, 7, 8, 9, 10 | offval 7574 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
12 | 11 | fneq1d 6557 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) Fn 𝑆 ↔ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆)) |
13 | 3, 12 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ↦ cmpt 5164 Fn wfn 6453 ‘cfv 6458 (class class class)co 7307 ∘f cof 7563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 |
This theorem is referenced by: offun 7579 offveq 7589 suppofss1d 8051 suppofss2d 8052 ofsubeq0 12016 ofnegsub 12017 ofsubge0 12018 seqof 13826 ofccat 14725 frlmsslsp 21048 frlmup1 21050 psrbagcon 21178 psrbagconOLD 21179 i1faddlem 24902 i1fmullem 24903 dv11cn 25210 coemulc 25461 ofmulrt 25487 plydivlem3 25500 plyrem 25510 jensen 26183 basellem9 26283 broucube 35855 ofun 40248 fsuppind 40316 caofcan 41979 ofmul12 41981 ofdivrec 41982 ofdivcan4 41983 ofdivdiv2 41984 |
Copyright terms: Public domain | W3C validator |