MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offn Structured version   Visualization version   GIF version

Theorem offn 7578
Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
Assertion
Ref Expression
offn (𝜑 → (𝐹f 𝑅𝐺) Fn 𝑆)

Proof of Theorem offn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7340 . . 3 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
2 eqid 2736 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
31, 2fnmpti 6606 . 2 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆
4 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.3 . . . 4 (𝜑𝐴𝑉)
7 offval.4 . . . 4 (𝜑𝐵𝑊)
8 offval.5 . . . 4 (𝐴𝐵) = 𝑆
9 eqidd 2737 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
10 eqidd 2737 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
114, 5, 6, 7, 8, 9, 10offval 7574 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1211fneq1d 6557 . 2 (𝜑 → ((𝐹f 𝑅𝐺) Fn 𝑆 ↔ (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆))
133, 12mpbiri 258 1 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cin 3891  cmpt 5164   Fn wfn 6453  cfv 6458  (class class class)co 7307  f cof 7563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565
This theorem is referenced by:  offun  7579  offveq  7589  suppofss1d  8051  suppofss2d  8052  ofsubeq0  12016  ofnegsub  12017  ofsubge0  12018  seqof  13826  ofccat  14725  frlmsslsp  21048  frlmup1  21050  psrbagcon  21178  psrbagconOLD  21179  i1faddlem  24902  i1fmullem  24903  dv11cn  25210  coemulc  25461  ofmulrt  25487  plydivlem3  25500  plyrem  25510  jensen  26183  basellem9  26283  broucube  35855  ofun  40248  fsuppind  40316  caofcan  41979  ofmul12  41981  ofdivrec  41982  ofdivcan4  41983  ofdivdiv2  41984
  Copyright terms: Public domain W3C validator