| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offn | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| Ref | Expression |
|---|---|
| offn | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7438 | . . 3 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V | |
| 2 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 3 | 1, 2 | fnmpti 6681 | . 2 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆 |
| 4 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | offval.5 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 9 | eqidd 2736 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 10 | eqidd 2736 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | offval 7680 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 12 | 11 | fneq1d 6631 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) Fn 𝑆 ↔ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆)) |
| 13 | 3, 12 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ↦ cmpt 5201 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 |
| This theorem is referenced by: offun 7685 offveq 7697 suppofss1d 8203 suppofss2d 8204 ofsubeq0 12237 ofnegsub 12238 ofsubge0 12239 seqof 14077 ofccat 14988 frlmsslsp 21756 frlmup1 21758 psrbagcon 21885 psdmul 22104 i1faddlem 25646 i1fmullem 25647 dv11cn 25958 coemulc 26212 ofmulrt 26241 plydivlem3 26255 plyrem 26265 jensen 26951 basellem9 27051 1arithidomlem2 33551 ply1degltdimlem 33662 broucube 37678 ofun 42287 fsuppind 42613 ofoafg 43378 ofoafo 43380 ofoaid1 43382 ofoaid2 43383 ofoaass 43384 ofoacom 43385 naddcnff 43386 naddcnffo 43388 naddcnfcom 43390 naddcnfid1 43391 naddcnfass 43393 caofcan 44347 ofmul12 44349 ofdivrec 44350 ofdivcan4 44351 ofdivdiv2 44352 |
| Copyright terms: Public domain | W3C validator |