| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offn | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| Ref | Expression |
|---|---|
| offn | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7420 | . . 3 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 3 | 1, 2 | fnmpti 6661 | . 2 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆 |
| 4 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | offval.5 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 9 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 10 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | offval 7662 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 12 | 11 | fneq1d 6611 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) Fn 𝑆 ↔ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆)) |
| 13 | 3, 12 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ↦ cmpt 5188 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 |
| This theorem is referenced by: offun 7667 offveq 7679 suppofss1d 8183 suppofss2d 8184 ofsubeq0 12183 ofnegsub 12184 ofsubge0 12185 seqof 14024 ofccat 14935 frlmsslsp 21705 frlmup1 21707 psrbagcon 21834 psdmul 22053 i1faddlem 25594 i1fmullem 25595 dv11cn 25906 coemulc 26160 ofmulrt 26189 plydivlem3 26203 plyrem 26213 jensen 26899 basellem9 26999 1arithidomlem2 33507 ply1degltdimlem 33618 broucube 37648 ofun 42224 fsuppind 42578 ofoafg 43343 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 ofoaass 43349 ofoacom 43350 naddcnff 43351 naddcnffo 43353 naddcnfcom 43355 naddcnfid1 43356 naddcnfass 43358 caofcan 44312 ofmul12 44314 ofdivrec 44315 ofdivcan4 44316 ofdivdiv2 44317 cjnpoly 46890 |
| Copyright terms: Public domain | W3C validator |