MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offn Structured version   Visualization version   GIF version

Theorem offn 7687
Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
Assertion
Ref Expression
offn (𝜑 → (𝐹f 𝑅𝐺) Fn 𝑆)

Proof of Theorem offn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7446 . . 3 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
2 eqid 2730 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
31, 2fnmpti 6694 . 2 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆
4 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.3 . . . 4 (𝜑𝐴𝑉)
7 offval.4 . . . 4 (𝜑𝐵𝑊)
8 offval.5 . . . 4 (𝐴𝐵) = 𝑆
9 eqidd 2731 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
10 eqidd 2731 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
114, 5, 6, 7, 8, 9, 10offval 7683 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1211fneq1d 6643 . 2 (𝜑 → ((𝐹f 𝑅𝐺) Fn 𝑆 ↔ (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆))
133, 12mpbiri 257 1 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  cin 3948  cmpt 5232   Fn wfn 6539  cfv 6544  (class class class)co 7413  f cof 7672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7674
This theorem is referenced by:  offun  7688  offveq  7698  suppofss1d  8193  suppofss2d  8194  ofsubeq0  12215  ofnegsub  12216  ofsubge0  12217  seqof  14031  ofccat  14922  frlmsslsp  21572  frlmup1  21574  psrbagcon  21704  psrbagconOLD  21705  i1faddlem  25444  i1fmullem  25445  dv11cn  25752  coemulc  26003  ofmulrt  26029  plydivlem3  26042  plyrem  26052  jensen  26727  basellem9  26827  ply1degltdimlem  32993  broucube  36827  ofun  41366  fsuppind  41466  ofoafg  42408  ofoafo  42410  ofoaid1  42412  ofoaid2  42413  ofoaass  42414  ofoacom  42415  naddcnff  42416  naddcnffo  42418  naddcnfcom  42420  naddcnfid1  42421  naddcnfass  42423  caofcan  43386  ofmul12  43388  ofdivrec  43389  ofdivcan4  43390  ofdivdiv2  43391
  Copyright terms: Public domain W3C validator