MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offn Structured version   Visualization version   GIF version

Theorem offn 7709
Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
Assertion
Ref Expression
offn (𝜑 → (𝐹f 𝑅𝐺) Fn 𝑆)

Proof of Theorem offn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7463 . . 3 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
2 eqid 2734 . . 3 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
31, 2fnmpti 6711 . 2 (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆
4 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.3 . . . 4 (𝜑𝐴𝑉)
7 offval.4 . . . 4 (𝜑𝐵𝑊)
8 offval.5 . . . 4 (𝐴𝐵) = 𝑆
9 eqidd 2735 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
10 eqidd 2735 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
114, 5, 6, 7, 8, 9, 10offval 7705 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
1211fneq1d 6661 . 2 (𝜑 → ((𝐹f 𝑅𝐺) Fn 𝑆 ↔ (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn 𝑆))
133, 12mpbiri 258 1 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cin 3961  cmpt 5230   Fn wfn 6557  cfv 6562  (class class class)co 7430  f cof 7694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696
This theorem is referenced by:  offun  7710  offveq  7722  suppofss1d  8227  suppofss2d  8228  ofsubeq0  12260  ofnegsub  12261  ofsubge0  12262  seqof  14096  ofccat  15004  frlmsslsp  21833  frlmup1  21835  psrbagcon  21962  psdmul  22187  i1faddlem  25741  i1fmullem  25742  dv11cn  26054  coemulc  26308  ofmulrt  26337  plydivlem3  26351  plyrem  26361  jensen  27046  basellem9  27146  1arithidomlem2  33543  ply1degltdimlem  33649  broucube  37640  ofun  42255  fsuppind  42576  ofoafg  43343  ofoafo  43345  ofoaid1  43347  ofoaid2  43348  ofoaass  43349  ofoacom  43350  naddcnff  43351  naddcnffo  43353  naddcnfcom  43355  naddcnfid1  43356  naddcnfass  43358  caofcan  44318  ofmul12  44320  ofdivrec  44321  ofdivcan4  44322  ofdivdiv2  44323
  Copyright terms: Public domain W3C validator