| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offn | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| Ref | Expression |
|---|---|
| offn | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7423 | . . 3 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V | |
| 2 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 3 | 1, 2 | fnmpti 6664 | . 2 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆 |
| 4 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | offval.5 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 9 | eqidd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 10 | eqidd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | offval 7665 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 12 | 11 | fneq1d 6614 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) Fn 𝑆 ↔ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆)) |
| 13 | 3, 12 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ↦ cmpt 5191 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 |
| This theorem is referenced by: offun 7670 offveq 7682 suppofss1d 8186 suppofss2d 8187 ofsubeq0 12190 ofnegsub 12191 ofsubge0 12192 seqof 14031 ofccat 14942 frlmsslsp 21712 frlmup1 21714 psrbagcon 21841 psdmul 22060 i1faddlem 25601 i1fmullem 25602 dv11cn 25913 coemulc 26167 ofmulrt 26196 plydivlem3 26210 plyrem 26220 jensen 26906 basellem9 27006 1arithidomlem2 33514 ply1degltdimlem 33625 broucube 37655 ofun 42231 fsuppind 42585 ofoafg 43350 ofoafo 43352 ofoaid1 43354 ofoaid2 43355 ofoaass 43356 ofoacom 43357 naddcnff 43358 naddcnffo 43360 naddcnfcom 43362 naddcnfid1 43363 naddcnfass 43365 caofcan 44319 ofmul12 44321 ofdivrec 44322 ofdivcan4 44323 ofdivdiv2 44324 |
| Copyright terms: Public domain | W3C validator |