| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offn | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| Ref | Expression |
|---|---|
| offn | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7382 | . . 3 ⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) | |
| 3 | 1, 2 | fnmpti 6625 | . 2 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆 |
| 4 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | offval.5 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 9 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 10 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | offval 7622 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 12 | 11 | fneq1d 6575 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) Fn 𝑆 ↔ (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn 𝑆)) |
| 13 | 3, 12 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ↦ cmpt 5173 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 |
| This theorem is referenced by: offun 7627 offveq 7639 suppofss1d 8137 suppofss2d 8138 ofsubeq0 12125 ofnegsub 12126 ofsubge0 12127 seqof 13966 ofccat 14876 frlmsslsp 21703 frlmup1 21705 psrbagcon 21832 psdmul 22051 i1faddlem 25592 i1fmullem 25593 dv11cn 25904 coemulc 26158 ofmulrt 26187 plydivlem3 26201 plyrem 26211 jensen 26897 basellem9 26997 1arithidomlem2 33473 ply1degltdimlem 33589 broucube 37634 ofun 42209 fsuppind 42563 ofoafg 43327 ofoafo 43329 ofoaid1 43331 ofoaid2 43332 ofoaass 43333 ofoacom 43334 naddcnff 43335 naddcnffo 43337 naddcnfcom 43339 naddcnfid1 43340 naddcnfass 43342 caofcan 44296 ofmul12 44298 ofdivrec 44299 ofdivcan4 44300 ofdivdiv2 44301 cjnpoly 46873 |
| Copyright terms: Public domain | W3C validator |