Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofsubid Structured version   Visualization version   GIF version

Theorem ofsubid 43073
Description: Function analogue of subid 11478. (Contributed by Steve Rodriguez, 5-Nov-2015.)
Assertion
Ref Expression
ofsubid ((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) β†’ (𝐹 ∘f βˆ’ 𝐹) = (𝐴 Γ— {0}))

Proof of Theorem ofsubid
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) β†’ 𝐴 ∈ 𝑉)
2 ffn 6717 . . 3 (𝐹:π΄βŸΆβ„‚ β†’ 𝐹 Fn 𝐴)
32adantl 482 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) β†’ 𝐹 Fn 𝐴)
4 c0ex 11207 . . . 4 0 ∈ V
54fconst 6777 . . 3 (𝐴 Γ— {0}):𝐴⟢{0}
6 ffn 6717 . . 3 ((𝐴 Γ— {0}):𝐴⟢{0} β†’ (𝐴 Γ— {0}) Fn 𝐴)
75, 6mp1i 13 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) β†’ (𝐴 Γ— {0}) Fn 𝐴)
8 eqidd 2733 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘₯))
9 ffvelcdm 7083 . . . . 5 ((𝐹:π΄βŸΆβ„‚ ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
109subidd 11558 . . . 4 ((𝐹:π΄βŸΆβ„‚ ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) βˆ’ (πΉβ€˜π‘₯)) = 0)
1110adantll 712 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) βˆ’ (πΉβ€˜π‘₯)) = 0)
124fvconst2 7204 . . . 4 (π‘₯ ∈ 𝐴 β†’ ((𝐴 Γ— {0})β€˜π‘₯) = 0)
1312adantl 482 . . 3 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ π‘₯ ∈ 𝐴) β†’ ((𝐴 Γ— {0})β€˜π‘₯) = 0)
1411, 13eqtr4d 2775 . 2 (((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) ∧ π‘₯ ∈ 𝐴) β†’ ((πΉβ€˜π‘₯) βˆ’ (πΉβ€˜π‘₯)) = ((𝐴 Γ— {0})β€˜π‘₯))
151, 3, 3, 7, 8, 8, 14offveq 7693 1 ((𝐴 ∈ 𝑉 ∧ 𝐹:π΄βŸΆβ„‚) β†’ (𝐹 ∘f βˆ’ 𝐹) = (𝐴 Γ— {0}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {csn 4628   Γ— cxp 5674   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ∘f cof 7667  β„‚cc 11107  0cc0 11109   βˆ’ cmin 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-sub 11445
This theorem is referenced by:  expgrowth  43084
  Copyright terms: Public domain W3C validator