| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofsubid | Structured version Visualization version GIF version | ||
| Description: Function analogue of subid 11401. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
| Ref | Expression |
|---|---|
| ofsubid | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) | |
| 2 | ffn 6656 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
| 4 | c0ex 11128 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | fconst 6714 | . . 3 ⊢ (𝐴 × {0}):𝐴⟶{0} |
| 6 | ffn 6656 | . . 3 ⊢ ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴) | |
| 7 | 5, 6 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐴 × {0}) Fn 𝐴) |
| 8 | eqidd 2730 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 9 | ffvelcdm 7019 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) | |
| 10 | 9 | subidd 11481 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) |
| 11 | 10 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) |
| 12 | 4 | fvconst2 7144 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 13 | 12 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 14 | 11, 13 | eqtr4d 2767 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = ((𝐴 × {0})‘𝑥)) |
| 15 | 1, 3, 3, 7, 8, 8, 14 | offveq 7643 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4579 × cxp 5621 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ℂcc 11026 0cc0 11028 − cmin 11365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 |
| This theorem is referenced by: expgrowth 44311 |
| Copyright terms: Public domain | W3C validator |