Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofsubid Structured version   Visualization version   GIF version

Theorem ofsubid 40146
Description: Function analogue of subid 10742. (Contributed by Steve Rodriguez, 5-Nov-2015.)
Assertion
Ref Expression
ofsubid ((𝐴𝑉𝐹:𝐴⟶ℂ) → (𝐹𝑓𝐹) = (𝐴 × {0}))

Proof of Theorem ofsubid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ) → 𝐴𝑉)
2 ffn 6374 . . 3 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
32adantl 482 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
4 c0ex 10470 . . . 4 0 ∈ V
54fconst 6425 . . 3 (𝐴 × {0}):𝐴⟶{0}
6 ffn 6374 . . 3 ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴)
75, 6mp1i 13 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ) → (𝐴 × {0}) Fn 𝐴)
8 eqidd 2794 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
9 ffvelrn 6705 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
109subidd 10822 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝑥𝐴) → ((𝐹𝑥) − (𝐹𝑥)) = 0)
1110adantll 710 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) − (𝐹𝑥)) = 0)
124fvconst2 6824 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1312adantl 482 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
1411, 13eqtr4d 2832 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹𝑥) − (𝐹𝑥)) = ((𝐴 × {0})‘𝑥))
151, 3, 3, 7, 8, 8, 14offveq 7279 1 ((𝐴𝑉𝐹:𝐴⟶ℂ) → (𝐹𝑓𝐹) = (𝐴 × {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  {csn 4466   × cxp 5433   Fn wfn 6212  wf 6213  cfv 6217  (class class class)co 7007  𝑓 cof 7256  cc 10370  0cc0 10372  cmin 10706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-po 5354  df-so 5355  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-ltxr 10515  df-sub 10708
This theorem is referenced by:  expgrowth  40157
  Copyright terms: Public domain W3C validator