![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofsubid | Structured version Visualization version GIF version |
Description: Function analogue of subid 11478. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
Ref | Expression |
---|---|
ofsubid | β’ ((π΄ β π β§ πΉ:π΄βΆβ) β (πΉ βf β πΉ) = (π΄ Γ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆβ) β π΄ β π) | |
2 | ffn 6717 | . . 3 β’ (πΉ:π΄βΆβ β πΉ Fn π΄) | |
3 | 2 | adantl 482 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆβ) β πΉ Fn π΄) |
4 | c0ex 11207 | . . . 4 β’ 0 β V | |
5 | 4 | fconst 6777 | . . 3 β’ (π΄ Γ {0}):π΄βΆ{0} |
6 | ffn 6717 | . . 3 β’ ((π΄ Γ {0}):π΄βΆ{0} β (π΄ Γ {0}) Fn π΄) | |
7 | 5, 6 | mp1i 13 | . 2 β’ ((π΄ β π β§ πΉ:π΄βΆβ) β (π΄ Γ {0}) Fn π΄) |
8 | eqidd 2733 | . 2 β’ (((π΄ β π β§ πΉ:π΄βΆβ) β§ π₯ β π΄) β (πΉβπ₯) = (πΉβπ₯)) | |
9 | ffvelcdm 7083 | . . . . 5 β’ ((πΉ:π΄βΆβ β§ π₯ β π΄) β (πΉβπ₯) β β) | |
10 | 9 | subidd 11558 | . . . 4 β’ ((πΉ:π΄βΆβ β§ π₯ β π΄) β ((πΉβπ₯) β (πΉβπ₯)) = 0) |
11 | 10 | adantll 712 | . . 3 β’ (((π΄ β π β§ πΉ:π΄βΆβ) β§ π₯ β π΄) β ((πΉβπ₯) β (πΉβπ₯)) = 0) |
12 | 4 | fvconst2 7204 | . . . 4 β’ (π₯ β π΄ β ((π΄ Γ {0})βπ₯) = 0) |
13 | 12 | adantl 482 | . . 3 β’ (((π΄ β π β§ πΉ:π΄βΆβ) β§ π₯ β π΄) β ((π΄ Γ {0})βπ₯) = 0) |
14 | 11, 13 | eqtr4d 2775 | . 2 β’ (((π΄ β π β§ πΉ:π΄βΆβ) β§ π₯ β π΄) β ((πΉβπ₯) β (πΉβπ₯)) = ((π΄ Γ {0})βπ₯)) |
15 | 1, 3, 3, 7, 8, 8, 14 | offveq 7693 | 1 β’ ((π΄ β π β§ πΉ:π΄βΆβ) β (πΉ βf β πΉ) = (π΄ Γ {0})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {csn 4628 Γ cxp 5674 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 βf cof 7667 βcc 11107 0cc0 11109 β cmin 11443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 |
This theorem is referenced by: expgrowth 43084 |
Copyright terms: Public domain | W3C validator |