| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofsubid | Structured version Visualization version GIF version | ||
| Description: Function analogue of subid 11502. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
| Ref | Expression |
|---|---|
| ofsubid | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) | |
| 2 | ffn 6706 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴) | |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
| 4 | c0ex 11229 | . . . 4 ⊢ 0 ∈ V | |
| 5 | 4 | fconst 6764 | . . 3 ⊢ (𝐴 × {0}):𝐴⟶{0} |
| 6 | ffn 6706 | . . 3 ⊢ ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴) | |
| 7 | 5, 6 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐴 × {0}) Fn 𝐴) |
| 8 | eqidd 2736 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 9 | ffvelcdm 7071 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) | |
| 10 | 9 | subidd 11582 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) |
| 11 | 10 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = 0) |
| 12 | 4 | fvconst2 7196 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 13 | 12 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 14 | 11, 13 | eqtr4d 2773 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) − (𝐹‘𝑥)) = ((𝐴 × {0})‘𝑥)) |
| 15 | 1, 3, 3, 7, 8, 8, 14 | offveq 7697 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 ℂcc 11127 0cc0 11129 − cmin 11466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 |
| This theorem is referenced by: expgrowth 44359 |
| Copyright terms: Public domain | W3C validator |