MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbprop Structured version   Visualization version   GIF version

Theorem glbprop 18283
Description: Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
glbprop.b 𝐵 = (Base‘𝐾)
glbprop.l = (le‘𝐾)
glbprop.u 𝑈 = (glb‘𝐾)
glbprop.k (𝜑𝐾𝑉)
glbprop.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
glbprop (𝜑 → (∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
Distinct variable groups:   𝑧,𝐵   𝑦,𝑧,𝐾   𝑦,𝑆,𝑧   𝑦,   𝑦,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑦)   (𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem glbprop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 glbprop.b . . . 4 𝐵 = (Base‘𝐾)
2 glbprop.l . . . 4 = (le‘𝐾)
3 glbprop.u . . . 4 𝑈 = (glb‘𝐾)
4 biid 261 . . . 4 ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
5 glbprop.k . . . 4 (𝜑𝐾𝑉)
6 glbprop.s . . . . 5 (𝜑𝑆 ∈ dom 𝑈)
71, 2, 3, 5, 6glbelss 18279 . . . 4 (𝜑𝑆𝐵)
81, 2, 3, 4, 5, 7glbval 18281 . . 3 (𝜑 → (𝑈𝑆) = (𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
98eqcomd 2739 . 2 (𝜑 → (𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))) = (𝑈𝑆))
101, 3, 5, 6glbcl 18282 . . 3 (𝜑 → (𝑈𝑆) ∈ 𝐵)
111, 2, 3, 4, 5, 6glbeu 18280 . . 3 (𝜑 → ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
12 breq1 5098 . . . . . 6 (𝑥 = (𝑈𝑆) → (𝑥 𝑦 ↔ (𝑈𝑆) 𝑦))
1312ralbidv 3156 . . . . 5 (𝑥 = (𝑈𝑆) → (∀𝑦𝑆 𝑥 𝑦 ↔ ∀𝑦𝑆 (𝑈𝑆) 𝑦))
14 breq2 5099 . . . . . . 7 (𝑥 = (𝑈𝑆) → (𝑧 𝑥𝑧 (𝑈𝑆)))
1514imbi2d 340 . . . . . 6 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
1615ralbidv 3156 . . . . 5 (𝑥 = (𝑈𝑆) → (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
1713, 16anbi12d 632 . . . 4 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆)))))
1817riota2 7337 . . 3 (((𝑈𝑆) ∈ 𝐵 ∧ ∃!𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))) → ((∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))) ↔ (𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))) = (𝑈𝑆)))
1910, 11, 18syl2anc 584 . 2 (𝜑 → ((∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))) ↔ (𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))) = (𝑈𝑆)))
209, 19mpbird 257 1 (𝜑 → (∀𝑦𝑆 (𝑈𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝑈𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  ∃!wreu 3345   class class class wbr 5095  dom cdm 5621  cfv 6489  crio 7311  Basecbs 17127  lecple 17175  glbcglb 18224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-glb 18259
This theorem is referenced by:  glble  18284  clatglb  18430
  Copyright terms: Public domain W3C validator