![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > glbprop | Structured version Visualization version GIF version |
Description: Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018.) |
Ref | Expression |
---|---|
glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
glbprop.l | ⊢ ≤ = (le‘𝐾) |
glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Ref | Expression |
---|---|
glbprop | ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
4 | biid 253 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
6 | glbprop.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
7 | 1, 2, 3, 5, 6 | glbelss 17385 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | 1, 2, 3, 4, 5, 7 | glbval 17387 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
9 | 8 | eqcomd 2784 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (𝑈‘𝑆)) |
10 | 1, 3, 5, 6 | glbcl 17388 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
11 | 1, 2, 3, 4, 5, 6 | glbeu 17386 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
12 | breq1 4891 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑥 ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑦)) | |
13 | 12 | ralbidv 3168 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦)) |
14 | breq2 4892 | . . . . . . 7 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ (𝑈‘𝑆))) | |
15 | 14 | imbi2d 332 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
16 | 15 | ralbidv 3168 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
17 | 13, 16 | anbi12d 624 | . . . 4 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆))))) |
18 | 17 | riota2 6907 | . . 3 ⊢ (((𝑈‘𝑆) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) → ((∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆))) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (𝑈‘𝑆))) |
19 | 10, 11, 18 | syl2anc 579 | . 2 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆))) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (𝑈‘𝑆))) |
20 | 9, 19 | mpbird 249 | 1 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃!wreu 3092 class class class wbr 4888 dom cdm 5357 ‘cfv 6137 ℩crio 6884 Basecbs 16259 lecple 16349 glbcglb 17333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-glb 17365 |
This theorem is referenced by: glble 17390 clatglb 17514 |
Copyright terms: Public domain | W3C validator |