| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > glbprop | Structured version Visualization version GIF version | ||
| Description: Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| glbprop.b | ⊢ 𝐵 = (Base‘𝐾) |
| glbprop.l | ⊢ ≤ = (le‘𝐾) |
| glbprop.u | ⊢ 𝑈 = (glb‘𝐾) |
| glbprop.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| glbprop.s | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
| Ref | Expression |
|---|---|
| glbprop | ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbprop.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | glbprop.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | glbprop.u | . . . 4 ⊢ 𝑈 = (glb‘𝐾) | |
| 4 | biid 261 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | |
| 5 | glbprop.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 6 | glbprop.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) | |
| 7 | 1, 2, 3, 5, 6 | glbelss 18382 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 7 | glbval 18384 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 9 | 8 | eqcomd 2742 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (𝑈‘𝑆)) |
| 10 | 1, 3, 5, 6 | glbcl 18385 | . . 3 ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) |
| 11 | 1, 2, 3, 4, 5, 6 | glbeu 18383 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 12 | breq1 5127 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑥 ≤ 𝑦 ↔ (𝑈‘𝑆) ≤ 𝑦)) | |
| 13 | 12 | ralbidv 3164 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦)) |
| 14 | breq2 5128 | . . . . . . 7 ⊢ (𝑥 = (𝑈‘𝑆) → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ (𝑈‘𝑆))) | |
| 15 | 14 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| 16 | 15 | ralbidv 3164 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| 17 | 13, 16 | anbi12d 632 | . . . 4 ⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆))))) |
| 18 | 17 | riota2 7392 | . . 3 ⊢ (((𝑈‘𝑆) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) → ((∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆))) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (𝑈‘𝑆))) |
| 19 | 10, 11, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆))) ↔ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (𝑈‘𝑆))) |
| 20 | 9, 19 | mpbird 257 | 1 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃!wreu 3362 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 ℩crio 7366 Basecbs 17233 lecple 17283 glbcglb 18327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-glb 18362 |
| This theorem is referenced by: glble 18387 clatglb 18531 |
| Copyright terms: Public domain | W3C validator |