MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmntrcld Structured version   Visualization version   GIF version

Theorem cmntrcld 22926
Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007.) (Proof shortened by OpenAI, 3-Jul-2020.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cmntrcld ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘𝑆)) ∈ (Clsd‘𝐽))

Proof of Theorem cmntrcld
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21ntropn 22912 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
31opncld 22896 . 2 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑆) ∈ 𝐽) → (𝑋 ∖ ((int‘𝐽)‘𝑆)) ∈ (Clsd‘𝐽))
42, 3syldan 591 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((int‘𝐽)‘𝑆)) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3908  wss 3911   cuni 4867  cfv 6499  Topctop 22756  Clsdccld 22879  intcnt 22880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-top 22757  df-cld 22882  df-ntr 22883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator