MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld3 Structured version   Visualization version   GIF version

Theorem iscld3 22951
Description: A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iscld3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆))

Proof of Theorem iscld3
StepHypRef Expression
1 cldcls 22929 . 2 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
2 clscld.1 . . . 4 𝑋 = 𝐽
32clscld 22934 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
4 eleq1 2816 . . 3 (((cls‘𝐽)‘𝑆) = 𝑆 → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ (Clsd‘𝐽)))
53, 4syl5ibcom 245 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) = 𝑆𝑆 ∈ (Clsd‘𝐽)))
61, 5impbid2 226 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  cfv 6511  Topctop 22780  Clsdccld 22903  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-cls 22908
This theorem is referenced by:  iscld4  22952  clsidm  22954  cldlp  23037  cldbnd  36314
  Copyright terms: Public domain W3C validator