| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmul01lt1 | Structured version Visualization version GIF version | ||
| Description: Given a finite multiplication of values between 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fmul01lt1.1 | ⊢ Ⅎ𝑖𝐵 |
| fmul01lt1.2 | ⊢ Ⅎ𝑖𝜑 |
| fmul01lt1.3 | ⊢ Ⅎ𝑗𝐴 |
| fmul01lt1.4 | ⊢ 𝐴 = seq1( · , 𝐵) |
| fmul01lt1.5 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fmul01lt1.6 | ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) |
| fmul01lt1.7 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| fmul01lt1.8 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| fmul01lt1.9 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| fmul01lt1.10 | ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) |
| Ref | Expression |
|---|---|
| fmul01lt1 | ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmul01lt1.10 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
| 3 | fmul01lt1.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
| 4 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗𝑀 | |
| 5 | 3, 4 | nffv 6868 | . . . 4 ⊢ Ⅎ𝑗(𝐴‘𝑀) |
| 6 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑗 < | |
| 7 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑗𝐸 | |
| 8 | 5, 6, 7 | nfbr 5154 | . . 3 ⊢ Ⅎ𝑗(𝐴‘𝑀) < 𝐸 |
| 9 | fmul01lt1.1 | . . . . 5 ⊢ Ⅎ𝑖𝐵 | |
| 10 | fmul01lt1.2 | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
| 11 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑖 𝑗 ∈ (1...𝑀) | |
| 12 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑖𝑗 | |
| 13 | 9, 12 | nffv 6868 | . . . . . . 7 ⊢ Ⅎ𝑖(𝐵‘𝑗) |
| 14 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑖 < | |
| 15 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑖𝐸 | |
| 16 | 13, 14, 15 | nfbr 5154 | . . . . . 6 ⊢ Ⅎ𝑖(𝐵‘𝑗) < 𝐸 |
| 17 | 10, 11, 16 | nf3an 1901 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) |
| 18 | fmul01lt1.4 | . . . . 5 ⊢ 𝐴 = seq1( · , 𝐵) | |
| 19 | 1zzd 12564 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 1 ∈ ℤ) | |
| 20 | fmul01lt1.5 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 21 | elnnuz 12837 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
| 22 | 20, 21 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
| 23 | 22 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑀 ∈ (ℤ≥‘1)) |
| 24 | fmul01lt1.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) | |
| 25 | 24 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 26 | 25 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 27 | fmul01lt1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) | |
| 28 | 27 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 29 | fmul01lt1.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) | |
| 30 | 29 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 31 | fmul01lt1.9 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 32 | 31 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝐸 ∈ ℝ+) |
| 33 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑗 ∈ (1...𝑀)) | |
| 34 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐵‘𝑗) < 𝐸) | |
| 35 | 9, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34 | fmul01lt1lem2 45583 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐴‘𝑀) < 𝐸) |
| 36 | 35 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (1...𝑀) → ((𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸))) |
| 37 | 2, 8, 36 | rexlimd 3244 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸)) |
| 38 | 1, 37 | mpd 15 | 1 ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∃wrex 3053 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 ℕcn 12186 ℤ≥cuz 12793 ℝ+crp 12951 ...cfz 13468 seqcseq 13966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 |
| This theorem is referenced by: stoweidlem48 46046 |
| Copyright terms: Public domain | W3C validator |