![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmul01lt1 | Structured version Visualization version GIF version |
Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fmul01lt1.1 | β’ β²ππ΅ |
fmul01lt1.2 | β’ β²ππ |
fmul01lt1.3 | β’ β²ππ΄ |
fmul01lt1.4 | β’ π΄ = seq1( Β· , π΅) |
fmul01lt1.5 | β’ (π β π β β) |
fmul01lt1.6 | β’ (π β π΅:(1...π)βΆβ) |
fmul01lt1.7 | β’ ((π β§ π β (1...π)) β 0 β€ (π΅βπ)) |
fmul01lt1.8 | β’ ((π β§ π β (1...π)) β (π΅βπ) β€ 1) |
fmul01lt1.9 | β’ (π β πΈ β β+) |
fmul01lt1.10 | β’ (π β βπ β (1...π)(π΅βπ) < πΈ) |
Ref | Expression |
---|---|
fmul01lt1 | β’ (π β (π΄βπ) < πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmul01lt1.10 | . 2 β’ (π β βπ β (1...π)(π΅βπ) < πΈ) | |
2 | nfv 1916 | . . 3 β’ β²ππ | |
3 | fmul01lt1.3 | . . . . 5 β’ β²ππ΄ | |
4 | nfcv 2902 | . . . . 5 β’ β²ππ | |
5 | 3, 4 | nffv 6902 | . . . 4 β’ β²π(π΄βπ) |
6 | nfcv 2902 | . . . 4 β’ β²π < | |
7 | nfcv 2902 | . . . 4 β’ β²ππΈ | |
8 | 5, 6, 7 | nfbr 5196 | . . 3 β’ β²π(π΄βπ) < πΈ |
9 | fmul01lt1.1 | . . . . 5 β’ β²ππ΅ | |
10 | fmul01lt1.2 | . . . . . 6 β’ β²ππ | |
11 | nfv 1916 | . . . . . 6 β’ β²π π β (1...π) | |
12 | nfcv 2902 | . . . . . . . 8 β’ β²ππ | |
13 | 9, 12 | nffv 6902 | . . . . . . 7 β’ β²π(π΅βπ) |
14 | nfcv 2902 | . . . . . . 7 β’ β²π < | |
15 | nfcv 2902 | . . . . . . 7 β’ β²ππΈ | |
16 | 13, 14, 15 | nfbr 5196 | . . . . . 6 β’ β²π(π΅βπ) < πΈ |
17 | 10, 11, 16 | nf3an 1903 | . . . . 5 β’ β²π(π β§ π β (1...π) β§ (π΅βπ) < πΈ) |
18 | fmul01lt1.4 | . . . . 5 β’ π΄ = seq1( Β· , π΅) | |
19 | 1zzd 12598 | . . . . 5 β’ ((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β 1 β β€) | |
20 | fmul01lt1.5 | . . . . . . 7 β’ (π β π β β) | |
21 | elnnuz 12871 | . . . . . . 7 β’ (π β β β π β (β€β₯β1)) | |
22 | 20, 21 | sylib 217 | . . . . . 6 β’ (π β π β (β€β₯β1)) |
23 | 22 | 3ad2ant1 1132 | . . . . 5 β’ ((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β π β (β€β₯β1)) |
24 | fmul01lt1.6 | . . . . . . 7 β’ (π β π΅:(1...π)βΆβ) | |
25 | 24 | ffvelcdmda 7087 | . . . . . 6 β’ ((π β§ π β (1...π)) β (π΅βπ) β β) |
26 | 25 | 3ad2antl1 1184 | . . . . 5 β’ (((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β§ π β (1...π)) β (π΅βπ) β β) |
27 | fmul01lt1.7 | . . . . . 6 β’ ((π β§ π β (1...π)) β 0 β€ (π΅βπ)) | |
28 | 27 | 3ad2antl1 1184 | . . . . 5 β’ (((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β§ π β (1...π)) β 0 β€ (π΅βπ)) |
29 | fmul01lt1.8 | . . . . . 6 β’ ((π β§ π β (1...π)) β (π΅βπ) β€ 1) | |
30 | 29 | 3ad2antl1 1184 | . . . . 5 β’ (((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β§ π β (1...π)) β (π΅βπ) β€ 1) |
31 | fmul01lt1.9 | . . . . . 6 β’ (π β πΈ β β+) | |
32 | 31 | 3ad2ant1 1132 | . . . . 5 β’ ((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β πΈ β β+) |
33 | simp2 1136 | . . . . 5 β’ ((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β π β (1...π)) | |
34 | simp3 1137 | . . . . 5 β’ ((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β (π΅βπ) < πΈ) | |
35 | 9, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34 | fmul01lt1lem2 44601 | . . . 4 β’ ((π β§ π β (1...π) β§ (π΅βπ) < πΈ) β (π΄βπ) < πΈ) |
36 | 35 | 3exp 1118 | . . 3 β’ (π β (π β (1...π) β ((π΅βπ) < πΈ β (π΄βπ) < πΈ))) |
37 | 2, 8, 36 | rexlimd 3262 | . 2 β’ (π β (βπ β (1...π)(π΅βπ) < πΈ β (π΄βπ) < πΈ)) |
38 | 1, 37 | mpd 15 | 1 β’ (π β (π΄βπ) < πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β²wnf 1784 β wcel 2105 β²wnfc 2882 βwrex 3069 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7412 βcr 11112 0cc0 11113 1c1 11114 Β· cmul 11118 < clt 11253 β€ cle 11254 βcn 12217 β€β₯cuz 12827 β+crp 12979 ...cfz 13489 seqcseq 13971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 |
This theorem is referenced by: stoweidlem48 45064 |
Copyright terms: Public domain | W3C validator |