Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1 Structured version   Visualization version   GIF version

Theorem fmul01lt1 45144
Description: Given a finite multiplication of values between 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1.1 𝑖𝐵
fmul01lt1.2 𝑖𝜑
fmul01lt1.3 𝑗𝐴
fmul01lt1.4 𝐴 = seq1( · , 𝐵)
fmul01lt1.5 (𝜑𝑀 ∈ ℕ)
fmul01lt1.6 (𝜑𝐵:(1...𝑀)⟶ℝ)
fmul01lt1.7 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))
fmul01lt1.8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)
fmul01lt1.9 (𝜑𝐸 ∈ ℝ+)
fmul01lt1.10 (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸)
Assertion
Ref Expression
fmul01lt1 (𝜑 → (𝐴𝑀) < 𝐸)
Distinct variable groups:   𝑖,𝑗,𝐸   𝑖,𝑀,𝑗   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)

Proof of Theorem fmul01lt1
StepHypRef Expression
1 fmul01lt1.10 . 2 (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸)
2 nfv 1909 . . 3 𝑗𝜑
3 fmul01lt1.3 . . . . 5 𝑗𝐴
4 nfcv 2891 . . . . 5 𝑗𝑀
53, 4nffv 6910 . . . 4 𝑗(𝐴𝑀)
6 nfcv 2891 . . . 4 𝑗 <
7 nfcv 2891 . . . 4 𝑗𝐸
85, 6, 7nfbr 5199 . . 3 𝑗(𝐴𝑀) < 𝐸
9 fmul01lt1.1 . . . . 5 𝑖𝐵
10 fmul01lt1.2 . . . . . 6 𝑖𝜑
11 nfv 1909 . . . . . 6 𝑖 𝑗 ∈ (1...𝑀)
12 nfcv 2891 . . . . . . . 8 𝑖𝑗
139, 12nffv 6910 . . . . . . 7 𝑖(𝐵𝑗)
14 nfcv 2891 . . . . . . 7 𝑖 <
15 nfcv 2891 . . . . . . 7 𝑖𝐸
1613, 14, 15nfbr 5199 . . . . . 6 𝑖(𝐵𝑗) < 𝐸
1710, 11, 16nf3an 1896 . . . . 5 𝑖(𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸)
18 fmul01lt1.4 . . . . 5 𝐴 = seq1( · , 𝐵)
19 1zzd 12640 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 1 ∈ ℤ)
20 fmul01lt1.5 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
21 elnnuz 12913 . . . . . . 7 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2220, 21sylib 217 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
23223ad2ant1 1130 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 𝑀 ∈ (ℤ‘1))
24 fmul01lt1.6 . . . . . . 7 (𝜑𝐵:(1...𝑀)⟶ℝ)
2524ffvelcdmda 7097 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ∈ ℝ)
26253ad2antl1 1182 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ∈ ℝ)
27 fmul01lt1.7 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))
28273ad2antl1 1182 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))
29 fmul01lt1.8 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)
30293ad2antl1 1182 . . . . 5 (((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)
31 fmul01lt1.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
32313ad2ant1 1130 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 𝐸 ∈ ℝ+)
33 simp2 1134 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → 𝑗 ∈ (1...𝑀))
34 simp3 1135 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → (𝐵𝑗) < 𝐸)
359, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34fmul01lt1lem2 45143 . . . 4 ((𝜑𝑗 ∈ (1...𝑀) ∧ (𝐵𝑗) < 𝐸) → (𝐴𝑀) < 𝐸)
36353exp 1116 . . 3 (𝜑 → (𝑗 ∈ (1...𝑀) → ((𝐵𝑗) < 𝐸 → (𝐴𝑀) < 𝐸)))
372, 8, 36rexlimd 3253 . 2 (𝜑 → (∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸 → (𝐴𝑀) < 𝐸))
381, 37mpd 15 1 (𝜑 → (𝐴𝑀) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  wrex 3059   class class class wbr 5152  wf 6549  cfv 6553  (class class class)co 7423  cr 11153  0cc0 11154  1c1 11155   · cmul 11159   < clt 11294  cle 11295  cn 12259  cuz 12869  +crp 13023  ...cfz 13533  seqcseq 14016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-n0 12520  df-z 12606  df-uz 12870  df-rp 13024  df-fz 13534  df-fzo 13677  df-seq 14017
This theorem is referenced by:  stoweidlem48  45606
  Copyright terms: Public domain W3C validator