Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmul01lt1 | Structured version Visualization version GIF version |
Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fmul01lt1.1 | ⊢ Ⅎ𝑖𝐵 |
fmul01lt1.2 | ⊢ Ⅎ𝑖𝜑 |
fmul01lt1.3 | ⊢ Ⅎ𝑗𝐴 |
fmul01lt1.4 | ⊢ 𝐴 = seq1( · , 𝐵) |
fmul01lt1.5 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fmul01lt1.6 | ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) |
fmul01lt1.7 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
fmul01lt1.8 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
fmul01lt1.9 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
fmul01lt1.10 | ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) |
Ref | Expression |
---|---|
fmul01lt1 | ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmul01lt1.10 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
3 | fmul01lt1.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑗𝑀 | |
5 | 3, 4 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑗(𝐴‘𝑀) |
6 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑗 < | |
7 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑗𝐸 | |
8 | 5, 6, 7 | nfbr 5121 | . . 3 ⊢ Ⅎ𝑗(𝐴‘𝑀) < 𝐸 |
9 | fmul01lt1.1 | . . . . 5 ⊢ Ⅎ𝑖𝐵 | |
10 | fmul01lt1.2 | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
11 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑖 𝑗 ∈ (1...𝑀) | |
12 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑖𝑗 | |
13 | 9, 12 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑖(𝐵‘𝑗) |
14 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑖 < | |
15 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑖𝐸 | |
16 | 13, 14, 15 | nfbr 5121 | . . . . . 6 ⊢ Ⅎ𝑖(𝐵‘𝑗) < 𝐸 |
17 | 10, 11, 16 | nf3an 1904 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) |
18 | fmul01lt1.4 | . . . . 5 ⊢ 𝐴 = seq1( · , 𝐵) | |
19 | 1zzd 12351 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 1 ∈ ℤ) | |
20 | fmul01lt1.5 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
21 | elnnuz 12622 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
22 | 20, 21 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
23 | 22 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑀 ∈ (ℤ≥‘1)) |
24 | fmul01lt1.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) | |
25 | 24 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
26 | 25 | 3ad2antl1 1184 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
27 | fmul01lt1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) | |
28 | 27 | 3ad2antl1 1184 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
29 | fmul01lt1.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) | |
30 | 29 | 3ad2antl1 1184 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
31 | fmul01lt1.9 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
32 | 31 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝐸 ∈ ℝ+) |
33 | simp2 1136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑗 ∈ (1...𝑀)) | |
34 | simp3 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐵‘𝑗) < 𝐸) | |
35 | 9, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34 | fmul01lt1lem2 43126 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐴‘𝑀) < 𝐸) |
36 | 35 | 3exp 1118 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (1...𝑀) → ((𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸))) |
37 | 2, 8, 36 | rexlimd 3250 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸)) |
38 | 1, 37 | mpd 15 | 1 ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∃wrex 3065 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 ≤ cle 11010 ℕcn 11973 ℤ≥cuz 12582 ℝ+crp 12730 ...cfz 13239 seqcseq 13721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 |
This theorem is referenced by: stoweidlem48 43589 |
Copyright terms: Public domain | W3C validator |