| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmul01lt1 | Structured version Visualization version GIF version | ||
| Description: Given a finite multiplication of values between 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fmul01lt1.1 | ⊢ Ⅎ𝑖𝐵 |
| fmul01lt1.2 | ⊢ Ⅎ𝑖𝜑 |
| fmul01lt1.3 | ⊢ Ⅎ𝑗𝐴 |
| fmul01lt1.4 | ⊢ 𝐴 = seq1( · , 𝐵) |
| fmul01lt1.5 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fmul01lt1.6 | ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) |
| fmul01lt1.7 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| fmul01lt1.8 | ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| fmul01lt1.9 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| fmul01lt1.10 | ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) |
| Ref | Expression |
|---|---|
| fmul01lt1 | ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmul01lt1.10 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
| 3 | fmul01lt1.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
| 4 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑗𝑀 | |
| 5 | 3, 4 | nffv 6886 | . . . 4 ⊢ Ⅎ𝑗(𝐴‘𝑀) |
| 6 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑗 < | |
| 7 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑗𝐸 | |
| 8 | 5, 6, 7 | nfbr 5166 | . . 3 ⊢ Ⅎ𝑗(𝐴‘𝑀) < 𝐸 |
| 9 | fmul01lt1.1 | . . . . 5 ⊢ Ⅎ𝑖𝐵 | |
| 10 | fmul01lt1.2 | . . . . . 6 ⊢ Ⅎ𝑖𝜑 | |
| 11 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑖 𝑗 ∈ (1...𝑀) | |
| 12 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑖𝑗 | |
| 13 | 9, 12 | nffv 6886 | . . . . . . 7 ⊢ Ⅎ𝑖(𝐵‘𝑗) |
| 14 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑖 < | |
| 15 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑖𝐸 | |
| 16 | 13, 14, 15 | nfbr 5166 | . . . . . 6 ⊢ Ⅎ𝑖(𝐵‘𝑗) < 𝐸 |
| 17 | 10, 11, 16 | nf3an 1901 | . . . . 5 ⊢ Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) |
| 18 | fmul01lt1.4 | . . . . 5 ⊢ 𝐴 = seq1( · , 𝐵) | |
| 19 | 1zzd 12623 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 1 ∈ ℤ) | |
| 20 | fmul01lt1.5 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 21 | elnnuz 12896 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
| 22 | 20, 21 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
| 23 | 22 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑀 ∈ (ℤ≥‘1)) |
| 24 | fmul01lt1.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) | |
| 25 | 24 | ffvelcdmda 7074 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 26 | 25 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 27 | fmul01lt1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) | |
| 28 | 27 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 29 | fmul01lt1.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) | |
| 30 | 29 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 31 | fmul01lt1.9 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 32 | 31 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝐸 ∈ ℝ+) |
| 33 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → 𝑗 ∈ (1...𝑀)) | |
| 34 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐵‘𝑗) < 𝐸) | |
| 35 | 9, 17, 18, 19, 23, 26, 28, 30, 32, 33, 34 | fmul01lt1lem2 45614 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀) ∧ (𝐵‘𝑗) < 𝐸) → (𝐴‘𝑀) < 𝐸) |
| 36 | 35 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (1...𝑀) → ((𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸))) |
| 37 | 2, 8, 36 | rexlimd 3249 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸 → (𝐴‘𝑀) < 𝐸)) |
| 38 | 1, 37 | mpd 15 | 1 ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 ∃wrex 3060 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 < clt 11269 ≤ cle 11270 ℕcn 12240 ℤ≥cuz 12852 ℝ+crp 13008 ...cfz 13524 seqcseq 14019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 |
| This theorem is referenced by: stoweidlem48 46077 |
| Copyright terms: Public domain | W3C validator |