Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsin0pilem1 Structured version   Visualization version   GIF version

Theorem itgsin0pilem1 45955
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
itgsin0pilem1.1 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
Assertion
Ref Expression
itgsin0pilem1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Distinct variable groups:   𝑥,𝑡   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑡)

Proof of Theorem itgsin0pilem1
StepHypRef Expression
1 itgsin0pilem1.1 . . . . . . . . . . 11 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
2 fveq2 6861 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (cos‘𝑡) = (cos‘𝑥))
32negeqd 11422 . . . . . . . . . . . 12 (𝑡 = 𝑥 → -(cos‘𝑡) = -(cos‘𝑥))
43cbvmptv 5214 . . . . . . . . . . 11 (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
51, 4eqtri 2753 . . . . . . . . . 10 𝐶 = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
65oveq2i 7401 . . . . . . . . 9 (ℝ D 𝐶) = (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)))
7 ax-resscn 11132 . . . . . . . . . . . 12 ℝ ⊆ ℂ
87a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ ℂ)
9 0re 11183 . . . . . . . . . . . . 13 0 ∈ ℝ
10 pire 26373 . . . . . . . . . . . . 13 π ∈ ℝ
11 iccssre 13397 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
129, 10, 11mp2an 692 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
1312a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℝ)
1412, 7sstri 3959 . . . . . . . . . . . . . . 15 (0[,]π) ⊆ ℂ
1514sseli 3945 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615coscld 16106 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
1716adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
1817negcld 11527 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
19 tgioo4 24700 . . . . . . . . . . 11 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
20 eqid 2730 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21 iccntr 24717 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
229, 10, 21mp2an 692 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π)
2322a1i 11 . . . . . . . . . . 11 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
248, 13, 18, 19, 20, 23dvmptntr 25882 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))))
2524mptru 1547 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥)))
26 reelprrecn 11167 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
2726a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ∈ {ℝ, ℂ})
28 recn 11165 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928coscld 16106 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
3029adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
3130negcld 11527 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
3228sincld 16105 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
3332adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
3432negcld 11527 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
3534adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
36 dvcosre 45917 . . . . . . . . . . . . . 14 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3736a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3827, 30, 35, 37dvmptneg 25877 . . . . . . . . . . . 12 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
3932negnegd 11531 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
4039mpteq2ia 5205 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))
4138, 40eqtrdi 2781 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
42 ioossre 13375 . . . . . . . . . . . 12 (0(,)π) ⊆ ℝ
4342a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ⊆ ℝ)
44 iooretop 24660 . . . . . . . . . . . 12 (0(,)π) ∈ (topGen‘ran (,))
4544a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ∈ (topGen‘ran (,)))
4627, 31, 33, 41, 43, 19, 20, 45dvmptres 25874 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
4746mptru 1547 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
486, 25, 473eqtri 2757 . . . . . . . 8 (ℝ D 𝐶) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
4948fveq1i 6862 . . . . . . 7 ((ℝ D 𝐶)‘𝑥) = ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥)
5042, 7sstri 3959 . . . . . . . . . 10 (0(,)π) ⊆ ℂ
5150sseli 3945 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
5251sincld 16105 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
53 eqid 2730 . . . . . . . . 9 (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
5453fvmpt2 6982 . . . . . . . 8 ((𝑥 ∈ (0(,)π) ∧ (sin‘𝑥) ∈ ℂ) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5552, 54mpdan 687 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5649, 55eqtrid 2777 . . . . . 6 (𝑥 ∈ (0(,)π) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5756adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)π)) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5857itgeq2dv 25690 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
5958mptru 1547 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥
609a1i 11 . . . . 5 (⊤ → 0 ∈ ℝ)
6110a1i 11 . . . . 5 (⊤ → π ∈ ℝ)
62 pipos 26375 . . . . . . 7 0 < π
639, 10, 62ltleii 11304 . . . . . 6 0 ≤ π
6463a1i 11 . . . . 5 (⊤ → 0 ≤ π)
65 nfcv 2892 . . . . . . 7 𝑥sin
66 sincn 26361 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
6766a1i 11 . . . . . . 7 (⊤ → sin ∈ (ℂ–cn→ℂ))
6850a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ ℂ)
6965, 67, 68cncfmptss 45592 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
7048, 69eqeltrid 2833 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ ((0(,)π)–cn→ℂ))
71 ioossicc 13401 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
7271a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ (0[,]π))
73 ioombl 25473 . . . . . . . 8 (0(,)π) ∈ dom vol
7473a1i 11 . . . . . . 7 (⊤ → (0(,)π) ∈ dom vol)
7515sincld 16105 . . . . . . . 8 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
7675adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
7714a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℂ)
7865, 67, 77cncfmptss 45592 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
7978mptru 1547 . . . . . . . . 9 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
80 cniccibl 25749 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
819, 10, 79, 80mp3an 1463 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1
8281a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8372, 74, 76, 82iblss 25713 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8448, 83eqeltrid 2833 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ 𝐿1)
8516negcld 11527 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
86 eqid 2730 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
8786fvmpt2 6982 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8815, 85, 87syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8988eqcomd 2736 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
9089mpteq2ia 5205 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
91 nfmpt1 5209 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
92 coscn 26362 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
9386negfcncf 24824 . . . . . . . . . . . 12 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9492, 93ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ)
9594a1i 11 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9691, 95, 77cncfmptss 45592 . . . . . . . . 9 (⊤ → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
9796mptru 1547 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
9890, 97eqeltri 2825 . . . . . . 7 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
995, 98eqeltri 2825 . . . . . 6 𝐶 ∈ ((0[,]π)–cn→ℂ)
10099a1i 11 . . . . 5 (⊤ → 𝐶 ∈ ((0[,]π)–cn→ℂ))
10160, 61, 64, 70, 84, 100ftc2 25958 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)))
102101mptru 1547 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
10359, 102eqtr3i 2755 . 2 ∫(0(,)π)(sin‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
104 0xr 11228 . . . . 5 0 ∈ ℝ*
10510rexri 11239 . . . . 5 π ∈ ℝ*
106 ubicc2 13433 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
107104, 105, 63, 106mp3an 1463 . . . 4 π ∈ (0[,]π)
108 fveq2 6861 . . . . . . . 8 (𝑡 = π → (cos‘𝑡) = (cos‘π))
109 cospi 26388 . . . . . . . 8 (cos‘π) = -1
110108, 109eqtrdi 2781 . . . . . . 7 (𝑡 = π → (cos‘𝑡) = -1)
111110negeqd 11422 . . . . . 6 (𝑡 = π → -(cos‘𝑡) = --1)
112 ax-1cn 11133 . . . . . . . 8 1 ∈ ℂ
113112a1i 11 . . . . . . 7 (𝑡 = π → 1 ∈ ℂ)
114113negnegd 11531 . . . . . 6 (𝑡 = π → --1 = 1)
115111, 114eqtrd 2765 . . . . 5 (𝑡 = π → -(cos‘𝑡) = 1)
116 1ex 11177 . . . . 5 1 ∈ V
117115, 1, 116fvmpt 6971 . . . 4 (π ∈ (0[,]π) → (𝐶‘π) = 1)
118107, 117ax-mp 5 . . 3 (𝐶‘π) = 1
119 lbicc2 13432 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
120104, 105, 63, 119mp3an 1463 . . . . 5 0 ∈ (0[,]π)
121 fveq2 6861 . . . . . . 7 (𝑡 = 0 → (cos‘𝑡) = (cos‘0))
122121negeqd 11422 . . . . . 6 (𝑡 = 0 → -(cos‘𝑡) = -(cos‘0))
123 negex 11426 . . . . . 6 -(cos‘0) ∈ V
124122, 1, 123fvmpt 6971 . . . . 5 (0 ∈ (0[,]π) → (𝐶‘0) = -(cos‘0))
125120, 124ax-mp 5 . . . 4 (𝐶‘0) = -(cos‘0)
126 cos0 16125 . . . . 5 (cos‘0) = 1
127126negeqi 11421 . . . 4 -(cos‘0) = -1
128125, 127eqtri 2753 . . 3 (𝐶‘0) = -1
129118, 128oveq12i 7402 . 2 ((𝐶‘π) − (𝐶‘0)) = (1 − -1)
130112, 112subnegi 11508 . . 3 (1 − -1) = (1 + 1)
131 1p1e2 12313 . . 3 (1 + 1) = 2
132130, 131eqtri 2753 . 2 (1 − -1) = 2
133103, 129, 1323eqtri 2757 1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214  cle 11216  cmin 11412  -cneg 11413  2c2 12248  (,)cioo 13313  [,]cicc 13316  sincsin 16036  cosccos 16037  πcpi 16039  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911  cnccncf 24776  volcvol 25371  𝐿1cibl 25525  citg 25526   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  itgsin0pi  45957
  Copyright terms: Public domain W3C validator