Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsin0pilem1 Structured version   Visualization version   GIF version

Theorem itgsin0pilem1 43381
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
itgsin0pilem1.1 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
Assertion
Ref Expression
itgsin0pilem1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Distinct variable groups:   𝑥,𝑡   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑡)

Proof of Theorem itgsin0pilem1
StepHypRef Expression
1 itgsin0pilem1.1 . . . . . . . . . . 11 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
2 fveq2 6756 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (cos‘𝑡) = (cos‘𝑥))
32negeqd 11145 . . . . . . . . . . . 12 (𝑡 = 𝑥 → -(cos‘𝑡) = -(cos‘𝑥))
43cbvmptv 5183 . . . . . . . . . . 11 (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
51, 4eqtri 2766 . . . . . . . . . 10 𝐶 = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
65oveq2i 7266 . . . . . . . . 9 (ℝ D 𝐶) = (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)))
7 ax-resscn 10859 . . . . . . . . . . . 12 ℝ ⊆ ℂ
87a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ ℂ)
9 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
10 pire 25520 . . . . . . . . . . . . 13 π ∈ ℝ
11 iccssre 13090 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
129, 10, 11mp2an 688 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
1312a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℝ)
1412, 7sstri 3926 . . . . . . . . . . . . . . 15 (0[,]π) ⊆ ℂ
1514sseli 3913 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615coscld 15768 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
1716adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
1817negcld 11249 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
19 eqid 2738 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 23872 . . . . . . . . . . 11 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 iccntr 23890 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
229, 10, 21mp2an 688 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π)
2322a1i 11 . . . . . . . . . . 11 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
248, 13, 18, 20, 19, 23dvmptntr 25040 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))))
2524mptru 1546 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥)))
26 reelprrecn 10894 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
2726a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ∈ {ℝ, ℂ})
28 recn 10892 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928coscld 15768 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
3029adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
3130negcld 11249 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
3228sincld 15767 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
3332adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
3432negcld 11249 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
3534adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
36 dvcosre 43343 . . . . . . . . . . . . . 14 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3736a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3827, 30, 35, 37dvmptneg 25035 . . . . . . . . . . . 12 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
3932negnegd 11253 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
4039mpteq2ia 5173 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))
4138, 40eqtrdi 2795 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
42 ioossre 13069 . . . . . . . . . . . 12 (0(,)π) ⊆ ℝ
4342a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ⊆ ℝ)
44 iooretop 23835 . . . . . . . . . . . 12 (0(,)π) ∈ (topGen‘ran (,))
4544a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ∈ (topGen‘ran (,)))
4627, 31, 33, 41, 43, 20, 19, 45dvmptres 25032 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
4746mptru 1546 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
486, 25, 473eqtri 2770 . . . . . . . 8 (ℝ D 𝐶) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
4948fveq1i 6757 . . . . . . 7 ((ℝ D 𝐶)‘𝑥) = ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥)
5042, 7sstri 3926 . . . . . . . . . 10 (0(,)π) ⊆ ℂ
5150sseli 3913 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
5251sincld 15767 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
53 eqid 2738 . . . . . . . . 9 (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
5453fvmpt2 6868 . . . . . . . 8 ((𝑥 ∈ (0(,)π) ∧ (sin‘𝑥) ∈ ℂ) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5552, 54mpdan 683 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5649, 55syl5eq 2791 . . . . . 6 (𝑥 ∈ (0(,)π) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5756adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)π)) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5857itgeq2dv 24851 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
5958mptru 1546 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥
609a1i 11 . . . . 5 (⊤ → 0 ∈ ℝ)
6110a1i 11 . . . . 5 (⊤ → π ∈ ℝ)
62 pipos 25522 . . . . . . 7 0 < π
639, 10, 62ltleii 11028 . . . . . 6 0 ≤ π
6463a1i 11 . . . . 5 (⊤ → 0 ≤ π)
65 nfcv 2906 . . . . . . 7 𝑥sin
66 sincn 25508 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
6766a1i 11 . . . . . . 7 (⊤ → sin ∈ (ℂ–cn→ℂ))
6850a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ ℂ)
6965, 67, 68cncfmptss 43018 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
7048, 69eqeltrid 2843 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ ((0(,)π)–cn→ℂ))
71 ioossicc 13094 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
7271a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ (0[,]π))
73 ioombl 24634 . . . . . . . 8 (0(,)π) ∈ dom vol
7473a1i 11 . . . . . . 7 (⊤ → (0(,)π) ∈ dom vol)
7515sincld 15767 . . . . . . . 8 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
7675adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
7714a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℂ)
7865, 67, 77cncfmptss 43018 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
7978mptru 1546 . . . . . . . . 9 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
80 cniccibl 24910 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
819, 10, 79, 80mp3an 1459 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1
8281a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8372, 74, 76, 82iblss 24874 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8448, 83eqeltrid 2843 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ 𝐿1)
8516negcld 11249 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
86 eqid 2738 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
8786fvmpt2 6868 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8815, 85, 87syl2anc 583 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8988eqcomd 2744 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
9089mpteq2ia 5173 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
91 nfmpt1 5178 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
92 coscn 25509 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
9386negfcncf 23992 . . . . . . . . . . . 12 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9492, 93ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ)
9594a1i 11 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9691, 95, 77cncfmptss 43018 . . . . . . . . 9 (⊤ → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
9796mptru 1546 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
9890, 97eqeltri 2835 . . . . . . 7 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
995, 98eqeltri 2835 . . . . . 6 𝐶 ∈ ((0[,]π)–cn→ℂ)
10099a1i 11 . . . . 5 (⊤ → 𝐶 ∈ ((0[,]π)–cn→ℂ))
10160, 61, 64, 70, 84, 100ftc2 25113 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)))
102101mptru 1546 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
10359, 102eqtr3i 2768 . 2 ∫(0(,)π)(sin‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
104 0xr 10953 . . . . 5 0 ∈ ℝ*
10510rexri 10964 . . . . 5 π ∈ ℝ*
106 ubicc2 13126 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
107104, 105, 63, 106mp3an 1459 . . . 4 π ∈ (0[,]π)
108 fveq2 6756 . . . . . . . 8 (𝑡 = π → (cos‘𝑡) = (cos‘π))
109 cospi 25534 . . . . . . . 8 (cos‘π) = -1
110108, 109eqtrdi 2795 . . . . . . 7 (𝑡 = π → (cos‘𝑡) = -1)
111110negeqd 11145 . . . . . 6 (𝑡 = π → -(cos‘𝑡) = --1)
112 ax-1cn 10860 . . . . . . . 8 1 ∈ ℂ
113112a1i 11 . . . . . . 7 (𝑡 = π → 1 ∈ ℂ)
114113negnegd 11253 . . . . . 6 (𝑡 = π → --1 = 1)
115111, 114eqtrd 2778 . . . . 5 (𝑡 = π → -(cos‘𝑡) = 1)
116 1ex 10902 . . . . 5 1 ∈ V
117115, 1, 116fvmpt 6857 . . . 4 (π ∈ (0[,]π) → (𝐶‘π) = 1)
118107, 117ax-mp 5 . . 3 (𝐶‘π) = 1
119 lbicc2 13125 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
120104, 105, 63, 119mp3an 1459 . . . . 5 0 ∈ (0[,]π)
121 fveq2 6756 . . . . . . 7 (𝑡 = 0 → (cos‘𝑡) = (cos‘0))
122121negeqd 11145 . . . . . 6 (𝑡 = 0 → -(cos‘𝑡) = -(cos‘0))
123 negex 11149 . . . . . 6 -(cos‘0) ∈ V
124122, 1, 123fvmpt 6857 . . . . 5 (0 ∈ (0[,]π) → (𝐶‘0) = -(cos‘0))
125120, 124ax-mp 5 . . . 4 (𝐶‘0) = -(cos‘0)
126 cos0 15787 . . . . 5 (cos‘0) = 1
127126negeqi 11144 . . . 4 -(cos‘0) = -1
128125, 127eqtri 2766 . . 3 (𝐶‘0) = -1
129118, 128oveq12i 7267 . 2 ((𝐶‘π) − (𝐶‘0)) = (1 − -1)
130112, 112subnegi 11230 . . 3 (1 − -1) = (1 + 1)
131 1p1e2 12028 . . 3 (1 + 1) = 2
132130, 131eqtri 2766 . 2 (1 − -1) = 2
133103, 129, 1323eqtri 2770 1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wtru 1540  wcel 2108  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939  cle 10941  cmin 11135  -cneg 11136  2c2 11958  (,)cioo 13008  [,]cicc 13011  sincsin 15701  cosccos 15702  πcpi 15704  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  intcnt 22076  cnccncf 23945  volcvol 24532  𝐿1cibl 24686  citg 24687   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  itgsin0pi  43383
  Copyright terms: Public domain W3C validator