Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsin0pilem1 Structured version   Visualization version   GIF version

Theorem itgsin0pilem1 45942
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
itgsin0pilem1.1 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
Assertion
Ref Expression
itgsin0pilem1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Distinct variable groups:   𝑥,𝑡   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑡)

Proof of Theorem itgsin0pilem1
StepHypRef Expression
1 itgsin0pilem1.1 . . . . . . . . . . 11 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
2 fveq2 6840 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (cos‘𝑡) = (cos‘𝑥))
32negeqd 11393 . . . . . . . . . . . 12 (𝑡 = 𝑥 → -(cos‘𝑡) = -(cos‘𝑥))
43cbvmptv 5206 . . . . . . . . . . 11 (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
51, 4eqtri 2752 . . . . . . . . . 10 𝐶 = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
65oveq2i 7380 . . . . . . . . 9 (ℝ D 𝐶) = (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)))
7 ax-resscn 11103 . . . . . . . . . . . 12 ℝ ⊆ ℂ
87a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ ℂ)
9 0re 11154 . . . . . . . . . . . . 13 0 ∈ ℝ
10 pire 26400 . . . . . . . . . . . . 13 π ∈ ℝ
11 iccssre 13368 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
129, 10, 11mp2an 692 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
1312a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℝ)
1412, 7sstri 3953 . . . . . . . . . . . . . . 15 (0[,]π) ⊆ ℂ
1514sseli 3939 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615coscld 16076 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
1716adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
1817negcld 11498 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
19 tgioo4 24727 . . . . . . . . . . 11 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
20 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21 iccntr 24744 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
229, 10, 21mp2an 692 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π)
2322a1i 11 . . . . . . . . . . 11 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
248, 13, 18, 19, 20, 23dvmptntr 25909 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))))
2524mptru 1547 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥)))
26 reelprrecn 11138 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
2726a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ∈ {ℝ, ℂ})
28 recn 11136 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928coscld 16076 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
3029adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
3130negcld 11498 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
3228sincld 16075 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
3332adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
3432negcld 11498 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
3534adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
36 dvcosre 45904 . . . . . . . . . . . . . 14 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3736a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3827, 30, 35, 37dvmptneg 25904 . . . . . . . . . . . 12 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
3932negnegd 11502 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
4039mpteq2ia 5197 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))
4138, 40eqtrdi 2780 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
42 ioossre 13346 . . . . . . . . . . . 12 (0(,)π) ⊆ ℝ
4342a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ⊆ ℝ)
44 iooretop 24687 . . . . . . . . . . . 12 (0(,)π) ∈ (topGen‘ran (,))
4544a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ∈ (topGen‘ran (,)))
4627, 31, 33, 41, 43, 19, 20, 45dvmptres 25901 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
4746mptru 1547 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
486, 25, 473eqtri 2756 . . . . . . . 8 (ℝ D 𝐶) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
4948fveq1i 6841 . . . . . . 7 ((ℝ D 𝐶)‘𝑥) = ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥)
5042, 7sstri 3953 . . . . . . . . . 10 (0(,)π) ⊆ ℂ
5150sseli 3939 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
5251sincld 16075 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
53 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
5453fvmpt2 6961 . . . . . . . 8 ((𝑥 ∈ (0(,)π) ∧ (sin‘𝑥) ∈ ℂ) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5552, 54mpdan 687 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5649, 55eqtrid 2776 . . . . . 6 (𝑥 ∈ (0(,)π) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5756adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)π)) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5857itgeq2dv 25717 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
5958mptru 1547 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥
609a1i 11 . . . . 5 (⊤ → 0 ∈ ℝ)
6110a1i 11 . . . . 5 (⊤ → π ∈ ℝ)
62 pipos 26402 . . . . . . 7 0 < π
639, 10, 62ltleii 11275 . . . . . 6 0 ≤ π
6463a1i 11 . . . . 5 (⊤ → 0 ≤ π)
65 nfcv 2891 . . . . . . 7 𝑥sin
66 sincn 26388 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
6766a1i 11 . . . . . . 7 (⊤ → sin ∈ (ℂ–cn→ℂ))
6850a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ ℂ)
6965, 67, 68cncfmptss 45579 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
7048, 69eqeltrid 2832 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ ((0(,)π)–cn→ℂ))
71 ioossicc 13372 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
7271a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ (0[,]π))
73 ioombl 25500 . . . . . . . 8 (0(,)π) ∈ dom vol
7473a1i 11 . . . . . . 7 (⊤ → (0(,)π) ∈ dom vol)
7515sincld 16075 . . . . . . . 8 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
7675adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
7714a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℂ)
7865, 67, 77cncfmptss 45579 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
7978mptru 1547 . . . . . . . . 9 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
80 cniccibl 25776 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
819, 10, 79, 80mp3an 1463 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1
8281a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8372, 74, 76, 82iblss 25740 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8448, 83eqeltrid 2832 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ 𝐿1)
8516negcld 11498 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
86 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
8786fvmpt2 6961 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8815, 85, 87syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8988eqcomd 2735 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
9089mpteq2ia 5197 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
91 nfmpt1 5201 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
92 coscn 26389 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
9386negfcncf 24851 . . . . . . . . . . . 12 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9492, 93ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ)
9594a1i 11 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9691, 95, 77cncfmptss 45579 . . . . . . . . 9 (⊤ → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
9796mptru 1547 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
9890, 97eqeltri 2824 . . . . . . 7 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
995, 98eqeltri 2824 . . . . . 6 𝐶 ∈ ((0[,]π)–cn→ℂ)
10099a1i 11 . . . . 5 (⊤ → 𝐶 ∈ ((0[,]π)–cn→ℂ))
10160, 61, 64, 70, 84, 100ftc2 25985 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)))
102101mptru 1547 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
10359, 102eqtr3i 2754 . 2 ∫(0(,)π)(sin‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
104 0xr 11199 . . . . 5 0 ∈ ℝ*
10510rexri 11210 . . . . 5 π ∈ ℝ*
106 ubicc2 13404 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
107104, 105, 63, 106mp3an 1463 . . . 4 π ∈ (0[,]π)
108 fveq2 6840 . . . . . . . 8 (𝑡 = π → (cos‘𝑡) = (cos‘π))
109 cospi 26415 . . . . . . . 8 (cos‘π) = -1
110108, 109eqtrdi 2780 . . . . . . 7 (𝑡 = π → (cos‘𝑡) = -1)
111110negeqd 11393 . . . . . 6 (𝑡 = π → -(cos‘𝑡) = --1)
112 ax-1cn 11104 . . . . . . . 8 1 ∈ ℂ
113112a1i 11 . . . . . . 7 (𝑡 = π → 1 ∈ ℂ)
114113negnegd 11502 . . . . . 6 (𝑡 = π → --1 = 1)
115111, 114eqtrd 2764 . . . . 5 (𝑡 = π → -(cos‘𝑡) = 1)
116 1ex 11148 . . . . 5 1 ∈ V
117115, 1, 116fvmpt 6950 . . . 4 (π ∈ (0[,]π) → (𝐶‘π) = 1)
118107, 117ax-mp 5 . . 3 (𝐶‘π) = 1
119 lbicc2 13403 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
120104, 105, 63, 119mp3an 1463 . . . . 5 0 ∈ (0[,]π)
121 fveq2 6840 . . . . . . 7 (𝑡 = 0 → (cos‘𝑡) = (cos‘0))
122121negeqd 11393 . . . . . 6 (𝑡 = 0 → -(cos‘𝑡) = -(cos‘0))
123 negex 11397 . . . . . 6 -(cos‘0) ∈ V
124122, 1, 123fvmpt 6950 . . . . 5 (0 ∈ (0[,]π) → (𝐶‘0) = -(cos‘0))
125120, 124ax-mp 5 . . . 4 (𝐶‘0) = -(cos‘0)
126 cos0 16095 . . . . 5 (cos‘0) = 1
127126negeqi 11392 . . . 4 -(cos‘0) = -1
128125, 127eqtri 2752 . . 3 (𝐶‘0) = -1
129118, 128oveq12i 7381 . 2 ((𝐶‘π) − (𝐶‘0)) = (1 − -1)
130112, 112subnegi 11479 . . 3 (1 − -1) = (1 + 1)
131 1p1e2 12284 . . 3 (1 + 1) = 2
132130, 131eqtri 2752 . 2 (1 − -1) = 2
133103, 129, 1323eqtri 2756 1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wss 3911  {cpr 4587   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  1c1 11047   + caddc 11049  *cxr 11185  cle 11187  cmin 11383  -cneg 11384  2c2 12219  (,)cioo 13284  [,]cicc 13287  sincsin 16006  cosccos 16007  πcpi 16009  TopOpenctopn 17361  topGenctg 17377  fldccnfld 21297  intcnt 22938  cnccncf 24803  volcvol 25398  𝐿1cibl 25552  citg 25553   D cdv 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cc 10366  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-acn 9873  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-cmp 23308  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-ovol 25399  df-vol 25400  df-mbf 25554  df-itg1 25555  df-itg2 25556  df-ibl 25557  df-itg 25558  df-0p 25605  df-limc 25801  df-dv 25802
This theorem is referenced by:  itgsin0pi  45944
  Copyright terms: Public domain W3C validator