Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsin0pilem1 Structured version   Visualization version   GIF version

Theorem itgsin0pilem1 43491
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
itgsin0pilem1.1 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
Assertion
Ref Expression
itgsin0pilem1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Distinct variable groups:   𝑥,𝑡   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑡)

Proof of Theorem itgsin0pilem1
StepHypRef Expression
1 itgsin0pilem1.1 . . . . . . . . . . 11 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
2 fveq2 6774 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (cos‘𝑡) = (cos‘𝑥))
32negeqd 11215 . . . . . . . . . . . 12 (𝑡 = 𝑥 → -(cos‘𝑡) = -(cos‘𝑥))
43cbvmptv 5187 . . . . . . . . . . 11 (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
51, 4eqtri 2766 . . . . . . . . . 10 𝐶 = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
65oveq2i 7286 . . . . . . . . 9 (ℝ D 𝐶) = (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)))
7 ax-resscn 10928 . . . . . . . . . . . 12 ℝ ⊆ ℂ
87a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ ℂ)
9 0re 10977 . . . . . . . . . . . . 13 0 ∈ ℝ
10 pire 25615 . . . . . . . . . . . . 13 π ∈ ℝ
11 iccssre 13161 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
129, 10, 11mp2an 689 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
1312a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℝ)
1412, 7sstri 3930 . . . . . . . . . . . . . . 15 (0[,]π) ⊆ ℂ
1514sseli 3917 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615coscld 15840 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
1716adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
1817negcld 11319 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
19 eqid 2738 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 23966 . . . . . . . . . . 11 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 iccntr 23984 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
229, 10, 21mp2an 689 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π)
2322a1i 11 . . . . . . . . . . 11 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
248, 13, 18, 20, 19, 23dvmptntr 25135 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))))
2524mptru 1546 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥)))
26 reelprrecn 10963 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
2726a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ∈ {ℝ, ℂ})
28 recn 10961 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928coscld 15840 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
3029adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
3130negcld 11319 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
3228sincld 15839 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
3332adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
3432negcld 11319 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
3534adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
36 dvcosre 43453 . . . . . . . . . . . . . 14 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3736a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3827, 30, 35, 37dvmptneg 25130 . . . . . . . . . . . 12 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
3932negnegd 11323 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
4039mpteq2ia 5177 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))
4138, 40eqtrdi 2794 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
42 ioossre 13140 . . . . . . . . . . . 12 (0(,)π) ⊆ ℝ
4342a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ⊆ ℝ)
44 iooretop 23929 . . . . . . . . . . . 12 (0(,)π) ∈ (topGen‘ran (,))
4544a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ∈ (topGen‘ran (,)))
4627, 31, 33, 41, 43, 20, 19, 45dvmptres 25127 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
4746mptru 1546 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
486, 25, 473eqtri 2770 . . . . . . . 8 (ℝ D 𝐶) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
4948fveq1i 6775 . . . . . . 7 ((ℝ D 𝐶)‘𝑥) = ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥)
5042, 7sstri 3930 . . . . . . . . . 10 (0(,)π) ⊆ ℂ
5150sseli 3917 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
5251sincld 15839 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
53 eqid 2738 . . . . . . . . 9 (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
5453fvmpt2 6886 . . . . . . . 8 ((𝑥 ∈ (0(,)π) ∧ (sin‘𝑥) ∈ ℂ) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5552, 54mpdan 684 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5649, 55eqtrid 2790 . . . . . 6 (𝑥 ∈ (0(,)π) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5756adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)π)) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5857itgeq2dv 24946 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
5958mptru 1546 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥
609a1i 11 . . . . 5 (⊤ → 0 ∈ ℝ)
6110a1i 11 . . . . 5 (⊤ → π ∈ ℝ)
62 pipos 25617 . . . . . . 7 0 < π
639, 10, 62ltleii 11098 . . . . . 6 0 ≤ π
6463a1i 11 . . . . 5 (⊤ → 0 ≤ π)
65 nfcv 2907 . . . . . . 7 𝑥sin
66 sincn 25603 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
6766a1i 11 . . . . . . 7 (⊤ → sin ∈ (ℂ–cn→ℂ))
6850a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ ℂ)
6965, 67, 68cncfmptss 43128 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
7048, 69eqeltrid 2843 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ ((0(,)π)–cn→ℂ))
71 ioossicc 13165 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
7271a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ (0[,]π))
73 ioombl 24729 . . . . . . . 8 (0(,)π) ∈ dom vol
7473a1i 11 . . . . . . 7 (⊤ → (0(,)π) ∈ dom vol)
7515sincld 15839 . . . . . . . 8 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
7675adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
7714a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℂ)
7865, 67, 77cncfmptss 43128 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
7978mptru 1546 . . . . . . . . 9 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
80 cniccibl 25005 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
819, 10, 79, 80mp3an 1460 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1
8281a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8372, 74, 76, 82iblss 24969 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8448, 83eqeltrid 2843 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ 𝐿1)
8516negcld 11319 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
86 eqid 2738 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
8786fvmpt2 6886 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8815, 85, 87syl2anc 584 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8988eqcomd 2744 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
9089mpteq2ia 5177 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
91 nfmpt1 5182 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
92 coscn 25604 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
9386negfcncf 24086 . . . . . . . . . . . 12 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9492, 93ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ)
9594a1i 11 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9691, 95, 77cncfmptss 43128 . . . . . . . . 9 (⊤ → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
9796mptru 1546 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
9890, 97eqeltri 2835 . . . . . . 7 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
995, 98eqeltri 2835 . . . . . 6 𝐶 ∈ ((0[,]π)–cn→ℂ)
10099a1i 11 . . . . 5 (⊤ → 𝐶 ∈ ((0[,]π)–cn→ℂ))
10160, 61, 64, 70, 84, 100ftc2 25208 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)))
102101mptru 1546 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
10359, 102eqtr3i 2768 . 2 ∫(0(,)π)(sin‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
104 0xr 11022 . . . . 5 0 ∈ ℝ*
10510rexri 11033 . . . . 5 π ∈ ℝ*
106 ubicc2 13197 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
107104, 105, 63, 106mp3an 1460 . . . 4 π ∈ (0[,]π)
108 fveq2 6774 . . . . . . . 8 (𝑡 = π → (cos‘𝑡) = (cos‘π))
109 cospi 25629 . . . . . . . 8 (cos‘π) = -1
110108, 109eqtrdi 2794 . . . . . . 7 (𝑡 = π → (cos‘𝑡) = -1)
111110negeqd 11215 . . . . . 6 (𝑡 = π → -(cos‘𝑡) = --1)
112 ax-1cn 10929 . . . . . . . 8 1 ∈ ℂ
113112a1i 11 . . . . . . 7 (𝑡 = π → 1 ∈ ℂ)
114113negnegd 11323 . . . . . 6 (𝑡 = π → --1 = 1)
115111, 114eqtrd 2778 . . . . 5 (𝑡 = π → -(cos‘𝑡) = 1)
116 1ex 10971 . . . . 5 1 ∈ V
117115, 1, 116fvmpt 6875 . . . 4 (π ∈ (0[,]π) → (𝐶‘π) = 1)
118107, 117ax-mp 5 . . 3 (𝐶‘π) = 1
119 lbicc2 13196 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
120104, 105, 63, 119mp3an 1460 . . . . 5 0 ∈ (0[,]π)
121 fveq2 6774 . . . . . . 7 (𝑡 = 0 → (cos‘𝑡) = (cos‘0))
122121negeqd 11215 . . . . . 6 (𝑡 = 0 → -(cos‘𝑡) = -(cos‘0))
123 negex 11219 . . . . . 6 -(cos‘0) ∈ V
124122, 1, 123fvmpt 6875 . . . . 5 (0 ∈ (0[,]π) → (𝐶‘0) = -(cos‘0))
125120, 124ax-mp 5 . . . 4 (𝐶‘0) = -(cos‘0)
126 cos0 15859 . . . . 5 (cos‘0) = 1
127126negeqi 11214 . . . 4 -(cos‘0) = -1
128125, 127eqtri 2766 . . 3 (𝐶‘0) = -1
129118, 128oveq12i 7287 . 2 ((𝐶‘π) − (𝐶‘0)) = (1 − -1)
130112, 112subnegi 11300 . . 3 (1 − -1) = (1 + 1)
131 1p1e2 12098 . . 3 (1 + 1) = 2
132130, 131eqtri 2766 . 2 (1 − -1) = 2
133103, 129, 1323eqtri 2770 1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wtru 1540  wcel 2106  wss 3887  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008  cle 11010  cmin 11205  -cneg 11206  2c2 12028  (,)cioo 13079  [,]cicc 13082  sincsin 15773  cosccos 15774  πcpi 15776  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  intcnt 22168  cnccncf 24039  volcvol 24627  𝐿1cibl 24781  citg 24782   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  itgsin0pi  43493
  Copyright terms: Public domain W3C validator