Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsin0pilem1 Structured version   Visualization version   GIF version

Theorem itgsin0pilem1 42592
Description: Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
itgsin0pilem1.1 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
Assertion
Ref Expression
itgsin0pilem1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Distinct variable groups:   𝑥,𝑡   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑡)

Proof of Theorem itgsin0pilem1
StepHypRef Expression
1 itgsin0pilem1.1 . . . . . . . . . . 11 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡))
2 fveq2 6645 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (cos‘𝑡) = (cos‘𝑥))
32negeqd 10869 . . . . . . . . . . . 12 (𝑡 = 𝑥 → -(cos‘𝑡) = -(cos‘𝑥))
43cbvmptv 5133 . . . . . . . . . . 11 (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
51, 4eqtri 2821 . . . . . . . . . 10 𝐶 = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))
65oveq2i 7146 . . . . . . . . 9 (ℝ D 𝐶) = (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)))
7 ax-resscn 10583 . . . . . . . . . . . 12 ℝ ⊆ ℂ
87a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ⊆ ℂ)
9 0re 10632 . . . . . . . . . . . . 13 0 ∈ ℝ
10 pire 25051 . . . . . . . . . . . . 13 π ∈ ℝ
11 iccssre 12807 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
129, 10, 11mp2an 691 . . . . . . . . . . . 12 (0[,]π) ⊆ ℝ
1312a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℝ)
1412, 7sstri 3924 . . . . . . . . . . . . . . 15 (0[,]π) ⊆ ℂ
1514sseli 3911 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
1615coscld 15476 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]π) → (cos‘𝑥) ∈ ℂ)
1716adantl 485 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ)
1817negcld 10973 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ)
19 eqid 2798 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2019tgioo2 23408 . . . . . . . . . . 11 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 iccntr 23426 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
229, 10, 21mp2an 691 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π)
2322a1i 11 . . . . . . . . . . 11 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,]π)) = (0(,)π))
248, 13, 18, 20, 19, 23dvmptntr 24574 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))))
2524mptru 1545 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥)))
26 reelprrecn 10618 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
2726a1i 11 . . . . . . . . . . 11 (⊤ → ℝ ∈ {ℝ, ℂ})
28 recn 10616 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928coscld 15476 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (cos‘𝑥) ∈ ℂ)
3029adantl 485 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ ℂ)
3130negcld 10973 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → -(cos‘𝑥) ∈ ℂ)
3228sincld 15475 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ)
3332adantl 485 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ)
3432negcld 10973 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → -(sin‘𝑥) ∈ ℂ)
3534adantl 485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ) → -(sin‘𝑥) ∈ ℂ)
36 dvcosre 42554 . . . . . . . . . . . . . 14 (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))
3736a1i 11 . . . . . . . . . . . . 13 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥)))
3827, 30, 35, 37dvmptneg 24569 . . . . . . . . . . . 12 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥)))
3932negnegd 10977 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → --(sin‘𝑥) = (sin‘𝑥))
4039mpteq2ia 5121 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ --(sin‘𝑥)) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))
4138, 40eqtrdi 2849 . . . . . . . . . . 11 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥)))
42 ioossre 12786 . . . . . . . . . . . 12 (0(,)π) ⊆ ℝ
4342a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ⊆ ℝ)
44 iooretop 23371 . . . . . . . . . . . 12 (0(,)π) ∈ (topGen‘ran (,))
4544a1i 11 . . . . . . . . . . 11 (⊤ → (0(,)π) ∈ (topGen‘ran (,)))
4627, 31, 33, 41, 43, 20, 19, 45dvmptres 24566 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)))
4746mptru 1545 . . . . . . . . 9 (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
486, 25, 473eqtri 2825 . . . . . . . 8 (ℝ D 𝐶) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
4948fveq1i 6646 . . . . . . 7 ((ℝ D 𝐶)‘𝑥) = ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥)
5042, 7sstri 3924 . . . . . . . . . 10 (0(,)π) ⊆ ℂ
5150sseli 3911 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
5251sincld 15475 . . . . . . . 8 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
53 eqid 2798 . . . . . . . . 9 (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))
5453fvmpt2 6756 . . . . . . . 8 ((𝑥 ∈ (0(,)π) ∧ (sin‘𝑥) ∈ ℂ) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5552, 54mpdan 686 . . . . . . 7 (𝑥 ∈ (0(,)π) → ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥))
5649, 55syl5eq 2845 . . . . . 6 (𝑥 ∈ (0(,)π) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5756adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ (0(,)π)) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥))
5857itgeq2dv 24385 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
5958mptru 1545 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥
609a1i 11 . . . . 5 (⊤ → 0 ∈ ℝ)
6110a1i 11 . . . . 5 (⊤ → π ∈ ℝ)
62 pipos 25053 . . . . . . 7 0 < π
639, 10, 62ltleii 10752 . . . . . 6 0 ≤ π
6463a1i 11 . . . . 5 (⊤ → 0 ≤ π)
65 nfcv 2955 . . . . . . 7 𝑥sin
66 sincn 25039 . . . . . . . 8 sin ∈ (ℂ–cn→ℂ)
6766a1i 11 . . . . . . 7 (⊤ → sin ∈ (ℂ–cn→ℂ))
6850a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ ℂ)
6965, 67, 68cncfmptss 42229 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ ((0(,)π)–cn→ℂ))
7048, 69eqeltrid 2894 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ ((0(,)π)–cn→ℂ))
71 ioossicc 12811 . . . . . . . 8 (0(,)π) ⊆ (0[,]π)
7271a1i 11 . . . . . . 7 (⊤ → (0(,)π) ⊆ (0[,]π))
73 ioombl 24169 . . . . . . . 8 (0(,)π) ∈ dom vol
7473a1i 11 . . . . . . 7 (⊤ → (0(,)π) ∈ dom vol)
7515sincld 15475 . . . . . . . 8 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
7675adantl 485 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
7714a1i 11 . . . . . . . . . . 11 (⊤ → (0[,]π) ⊆ ℂ)
7865, 67, 77cncfmptss 42229 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
7978mptru 1545 . . . . . . . . 9 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
80 cniccibl 24444 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
819, 10, 79, 80mp3an 1458 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1
8281a1i 11 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8372, 74, 76, 82iblss 24408 . . . . . 6 (⊤ → (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) ∈ 𝐿1)
8448, 83eqeltrid 2894 . . . . 5 (⊤ → (ℝ D 𝐶) ∈ 𝐿1)
8516negcld 10973 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) ∈ ℂ)
86 eqid 2798 . . . . . . . . . . . 12 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
8786fvmpt2 6756 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ -(cos‘𝑥) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8815, 85, 87syl2anc 587 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥))
8988eqcomd 2804 . . . . . . . . 9 (𝑥 ∈ (0[,]π) → -(cos‘𝑥) = ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
9089mpteq2ia 5121 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥))
91 nfmpt1 5128 . . . . . . . . . 10 𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥))
92 coscn 25040 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
9386negfcncf 23528 . . . . . . . . . . . 12 (cos ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9492, 93ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ)
9594a1i 11 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) ∈ (ℂ–cn→ℂ))
9691, 95, 77cncfmptss 42229 . . . . . . . . 9 (⊤ → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
9796mptru 1545 . . . . . . . 8 (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
9890, 97eqeltri 2886 . . . . . . 7 (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) ∈ ((0[,]π)–cn→ℂ)
995, 98eqeltri 2886 . . . . . 6 𝐶 ∈ ((0[,]π)–cn→ℂ)
10099a1i 11 . . . . 5 (⊤ → 𝐶 ∈ ((0[,]π)–cn→ℂ))
10160, 61, 64, 70, 84, 100ftc2 24647 . . . 4 (⊤ → ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)))
102101mptru 1545 . . 3 ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
10359, 102eqtr3i 2823 . 2 ∫(0(,)π)(sin‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))
104 0xr 10677 . . . . 5 0 ∈ ℝ*
10510rexri 10688 . . . . 5 π ∈ ℝ*
106 ubicc2 12843 . . . . 5 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
107104, 105, 63, 106mp3an 1458 . . . 4 π ∈ (0[,]π)
108 fveq2 6645 . . . . . . . 8 (𝑡 = π → (cos‘𝑡) = (cos‘π))
109 cospi 25065 . . . . . . . 8 (cos‘π) = -1
110108, 109eqtrdi 2849 . . . . . . 7 (𝑡 = π → (cos‘𝑡) = -1)
111110negeqd 10869 . . . . . 6 (𝑡 = π → -(cos‘𝑡) = --1)
112 ax-1cn 10584 . . . . . . . 8 1 ∈ ℂ
113112a1i 11 . . . . . . 7 (𝑡 = π → 1 ∈ ℂ)
114113negnegd 10977 . . . . . 6 (𝑡 = π → --1 = 1)
115111, 114eqtrd 2833 . . . . 5 (𝑡 = π → -(cos‘𝑡) = 1)
116 1ex 10626 . . . . 5 1 ∈ V
117115, 1, 116fvmpt 6745 . . . 4 (π ∈ (0[,]π) → (𝐶‘π) = 1)
118107, 117ax-mp 5 . . 3 (𝐶‘π) = 1
119 lbicc2 12842 . . . . . 6 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
120104, 105, 63, 119mp3an 1458 . . . . 5 0 ∈ (0[,]π)
121 fveq2 6645 . . . . . . 7 (𝑡 = 0 → (cos‘𝑡) = (cos‘0))
122121negeqd 10869 . . . . . 6 (𝑡 = 0 → -(cos‘𝑡) = -(cos‘0))
123 negex 10873 . . . . . 6 -(cos‘0) ∈ V
124122, 1, 123fvmpt 6745 . . . . 5 (0 ∈ (0[,]π) → (𝐶‘0) = -(cos‘0))
125120, 124ax-mp 5 . . . 4 (𝐶‘0) = -(cos‘0)
126 cos0 15495 . . . . 5 (cos‘0) = 1
127126negeqi 10868 . . . 4 -(cos‘0) = -1
128125, 127eqtri 2821 . . 3 (𝐶‘0) = -1
129118, 128oveq12i 7147 . 2 ((𝐶‘π) − (𝐶‘0)) = (1 − -1)
130112, 112subnegi 10954 . . 3 (1 − -1) = (1 + 1)
131 1p1e2 11750 . . 3 (1 + 1) = 2
132130, 131eqtri 2821 . 2 (1 − -1) = 2
133103, 129, 1323eqtri 2825 1 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2111  wss 3881  {cpr 4527   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663  cle 10665  cmin 10859  -cneg 10860  2c2 11680  (,)cioo 12726  [,]cicc 12729  sincsin 15409  cosccos 15410  πcpi 15412  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  intcnt 21622  cnccncf 23481  volcvol 24067  𝐿1cibl 24221  citg 24222   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-symdif 4169  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24469  df-dv 24470
This theorem is referenced by:  itgsin0pi  42594
  Copyright terms: Public domain W3C validator