Proof of Theorem itgsin0pilem1
Step | Hyp | Ref
| Expression |
1 | | itgsin0pilem1.1 |
. . . . . . . . . . 11
⊢ 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) |
2 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (cos‘𝑡) = (cos‘𝑥)) |
3 | 2 | negeqd 11215 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → -(cos‘𝑡) = -(cos‘𝑥)) |
4 | 3 | cbvmptv 5187 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (0[,]π) ↦
-(cos‘𝑡)) = (𝑥 ∈ (0[,]π) ↦
-(cos‘𝑥)) |
5 | 1, 4 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐶 = (𝑥 ∈ (0[,]π) ↦ -(cos‘𝑥)) |
6 | 5 | oveq2i 7286 |
. . . . . . . . 9
⊢ (ℝ
D 𝐶) = (ℝ D (𝑥 ∈ (0[,]π) ↦
-(cos‘𝑥))) |
7 | | ax-resscn 10928 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
8 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ ℝ ⊆ ℂ) |
9 | | 0re 10977 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
10 | | pire 25615 |
. . . . . . . . . . . . 13
⊢ π
∈ ℝ |
11 | | iccssre 13161 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆
ℝ) |
12 | 9, 10, 11 | mp2an 689 |
. . . . . . . . . . . 12
⊢
(0[,]π) ⊆ ℝ |
13 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ (0[,]π) ⊆ ℝ) |
14 | 12, 7 | sstri 3930 |
. . . . . . . . . . . . . . 15
⊢
(0[,]π) ⊆ ℂ |
15 | 14 | sseli 3917 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0[,]π) → 𝑥 ∈
ℂ) |
16 | 15 | coscld 15840 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0[,]π) →
(cos‘𝑥) ∈
ℂ) |
17 | 16 | adantl 482 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (0[,]π)) → (cos‘𝑥) ∈ ℂ) |
18 | 17 | negcld 11319 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (0[,]π)) → -(cos‘𝑥) ∈ ℂ) |
19 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
20 | 19 | tgioo2 23966 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
21 | | iccntr 23984 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ π ∈ ℝ) → ((int‘(topGen‘ran
(,)))‘(0[,]π)) = (0(,)π)) |
22 | 9, 10, 21 | mp2an 689 |
. . . . . . . . . . . 12
⊢
((int‘(topGen‘ran (,)))‘(0[,]π)) =
(0(,)π) |
23 | 22 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ ((int‘(topGen‘ran (,)))‘(0[,]π)) =
(0(,)π)) |
24 | 8, 13, 18, 20, 19, 23 | dvmptntr 25135 |
. . . . . . . . . 10
⊢ (⊤
→ (ℝ D (𝑥 ∈
(0[,]π) ↦ -(cos‘𝑥))) = (ℝ D (𝑥 ∈ (0(,)π) ↦ -(cos‘𝑥)))) |
25 | 24 | mptru 1546 |
. . . . . . . . 9
⊢ (ℝ
D (𝑥 ∈ (0[,]π)
↦ -(cos‘𝑥))) =
(ℝ D (𝑥 ∈
(0(,)π) ↦ -(cos‘𝑥))) |
26 | | reelprrecn 10963 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ ℝ ∈ {ℝ, ℂ}) |
28 | | recn 10961 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
29 | 28 | coscld 15840 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
(cos‘𝑥) ∈
ℂ) |
30 | 29 | adantl 482 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ ℝ) → (cos‘𝑥) ∈ ℂ) |
31 | 30 | negcld 11319 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℝ) → -(cos‘𝑥) ∈ ℂ) |
32 | 28 | sincld 15839 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ →
(sin‘𝑥) ∈
ℂ) |
33 | 32 | adantl 482 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℝ) → (sin‘𝑥) ∈ ℂ) |
34 | 32 | negcld 11319 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ →
-(sin‘𝑥) ∈
ℂ) |
35 | 34 | adantl 482 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ ℝ) → -(sin‘𝑥) ∈ ℂ) |
36 | | dvcosre 43453 |
. . . . . . . . . . . . . 14
⊢ (ℝ
D (𝑥 ∈ ℝ ↦
(cos‘𝑥))) = (𝑥 ∈ ℝ ↦
-(sin‘𝑥)) |
37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ (cos‘𝑥))) = (𝑥 ∈ ℝ ↦ -(sin‘𝑥))) |
38 | 27, 30, 35, 37 | dvmptneg 25130 |
. . . . . . . . . . . 12
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ --(sin‘𝑥))) |
39 | 32 | negnegd 11323 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ →
--(sin‘𝑥) =
(sin‘𝑥)) |
40 | 39 | mpteq2ia 5177 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦
--(sin‘𝑥)) = (𝑥 ∈ ℝ ↦
(sin‘𝑥)) |
41 | 38, 40 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ ↦ -(cos‘𝑥))) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))) |
42 | | ioossre 13140 |
. . . . . . . . . . . 12
⊢
(0(,)π) ⊆ ℝ |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ (0(,)π) ⊆ ℝ) |
44 | | iooretop 23929 |
. . . . . . . . . . . 12
⊢
(0(,)π) ∈ (topGen‘ran (,)) |
45 | 44 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ (0(,)π) ∈ (topGen‘ran (,))) |
46 | 27, 31, 33, 41, 43, 20, 19, 45 | dvmptres 25127 |
. . . . . . . . . 10
⊢ (⊤
→ (ℝ D (𝑥 ∈
(0(,)π) ↦ -(cos‘𝑥))) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))) |
47 | 46 | mptru 1546 |
. . . . . . . . 9
⊢ (ℝ
D (𝑥 ∈ (0(,)π)
↦ -(cos‘𝑥))) =
(𝑥 ∈ (0(,)π)
↦ (sin‘𝑥)) |
48 | 6, 25, 47 | 3eqtri 2770 |
. . . . . . . 8
⊢ (ℝ
D 𝐶) = (𝑥 ∈ (0(,)π) ↦ (sin‘𝑥)) |
49 | 48 | fveq1i 6775 |
. . . . . . 7
⊢ ((ℝ
D 𝐶)‘𝑥) = ((𝑥 ∈ (0(,)π) ↦ (sin‘𝑥))‘𝑥) |
50 | 42, 7 | sstri 3930 |
. . . . . . . . . 10
⊢
(0(,)π) ⊆ ℂ |
51 | 50 | sseli 3917 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈
ℂ) |
52 | 51 | sincld 15839 |
. . . . . . . 8
⊢ (𝑥 ∈ (0(,)π) →
(sin‘𝑥) ∈
ℂ) |
53 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0(,)π) ↦
(sin‘𝑥)) = (𝑥 ∈ (0(,)π) ↦
(sin‘𝑥)) |
54 | 53 | fvmpt2 6886 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0(,)π) ∧
(sin‘𝑥) ∈
ℂ) → ((𝑥 ∈
(0(,)π) ↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥)) |
55 | 52, 54 | mpdan 684 |
. . . . . . 7
⊢ (𝑥 ∈ (0(,)π) →
((𝑥 ∈ (0(,)π)
↦ (sin‘𝑥))‘𝑥) = (sin‘𝑥)) |
56 | 49, 55 | eqtrid 2790 |
. . . . . 6
⊢ (𝑥 ∈ (0(,)π) →
((ℝ D 𝐶)‘𝑥) = (sin‘𝑥)) |
57 | 56 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (0(,)π)) → ((ℝ D 𝐶)‘𝑥) = (sin‘𝑥)) |
58 | 57 | itgeq2dv 24946 |
. . . 4
⊢ (⊤
→ ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥) |
59 | 58 | mptru 1546 |
. . 3
⊢
∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥 |
60 | 9 | a1i 11 |
. . . . 5
⊢ (⊤
→ 0 ∈ ℝ) |
61 | 10 | a1i 11 |
. . . . 5
⊢ (⊤
→ π ∈ ℝ) |
62 | | pipos 25617 |
. . . . . . 7
⊢ 0 <
π |
63 | 9, 10, 62 | ltleii 11098 |
. . . . . 6
⊢ 0 ≤
π |
64 | 63 | a1i 11 |
. . . . 5
⊢ (⊤
→ 0 ≤ π) |
65 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑥sin |
66 | | sincn 25603 |
. . . . . . . 8
⊢ sin
∈ (ℂ–cn→ℂ) |
67 | 66 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ sin ∈ (ℂ–cn→ℂ)) |
68 | 50 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (0(,)π) ⊆ ℂ) |
69 | 65, 67, 68 | cncfmptss 43128 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ (0(,)π)
↦ (sin‘𝑥))
∈ ((0(,)π)–cn→ℂ)) |
70 | 48, 69 | eqeltrid 2843 |
. . . . 5
⊢ (⊤
→ (ℝ D 𝐶) ∈
((0(,)π)–cn→ℂ)) |
71 | | ioossicc 13165 |
. . . . . . . 8
⊢
(0(,)π) ⊆ (0[,]π) |
72 | 71 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (0(,)π) ⊆ (0[,]π)) |
73 | | ioombl 24729 |
. . . . . . . 8
⊢
(0(,)π) ∈ dom vol |
74 | 73 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (0(,)π) ∈ dom vol) |
75 | 15 | sincld 15839 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]π) →
(sin‘𝑥) ∈
ℂ) |
76 | 75 | adantl 482 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ) |
77 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ (0[,]π) ⊆ ℂ) |
78 | 65, 67, 77 | cncfmptss 43128 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑥 ∈ (0[,]π)
↦ (sin‘𝑥))
∈ ((0[,]π)–cn→ℂ)) |
79 | 78 | mptru 1546 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]π) ↦
(sin‘𝑥)) ∈
((0[,]π)–cn→ℂ) |
80 | | cniccibl 25005 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ (sin‘𝑥)) ∈
((0[,]π)–cn→ℂ)) →
(𝑥 ∈ (0[,]π)
↦ (sin‘𝑥))
∈ 𝐿1) |
81 | 9, 10, 79, 80 | mp3an 1460 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]π) ↦
(sin‘𝑥)) ∈
𝐿1 |
82 | 81 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (𝑥 ∈ (0[,]π)
↦ (sin‘𝑥))
∈ 𝐿1) |
83 | 72, 74, 76, 82 | iblss 24969 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ (0(,)π)
↦ (sin‘𝑥))
∈ 𝐿1) |
84 | 48, 83 | eqeltrid 2843 |
. . . . 5
⊢ (⊤
→ (ℝ D 𝐶) ∈
𝐿1) |
85 | 16 | negcld 11319 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,]π) →
-(cos‘𝑥) ∈
ℂ) |
86 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ ↦
-(cos‘𝑥)) = (𝑥 ∈ ℂ ↦
-(cos‘𝑥)) |
87 | 86 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧
-(cos‘𝑥) ∈
ℂ) → ((𝑥 ∈
ℂ ↦ -(cos‘𝑥))‘𝑥) = -(cos‘𝑥)) |
88 | 15, 85, 87 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0[,]π) →
((𝑥 ∈ ℂ ↦
-(cos‘𝑥))‘𝑥) = -(cos‘𝑥)) |
89 | 88 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,]π) →
-(cos‘𝑥) = ((𝑥 ∈ ℂ ↦
-(cos‘𝑥))‘𝑥)) |
90 | 89 | mpteq2ia 5177 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]π) ↦
-(cos‘𝑥)) = (𝑥 ∈ (0[,]π) ↦
((𝑥 ∈ ℂ ↦
-(cos‘𝑥))‘𝑥)) |
91 | | nfmpt1 5182 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ ℂ ↦ -(cos‘𝑥)) |
92 | | coscn 25604 |
. . . . . . . . . . . 12
⊢ cos
∈ (ℂ–cn→ℂ) |
93 | 86 | negfcncf 24086 |
. . . . . . . . . . . 12
⊢ (cos
∈ (ℂ–cn→ℂ)
→ (𝑥 ∈ ℂ
↦ -(cos‘𝑥))
∈ (ℂ–cn→ℂ)) |
94 | 92, 93 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ ↦
-(cos‘𝑥)) ∈
(ℂ–cn→ℂ) |
95 | 94 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑥 ∈ ℂ
↦ -(cos‘𝑥))
∈ (ℂ–cn→ℂ)) |
96 | 91, 95, 77 | cncfmptss 43128 |
. . . . . . . . 9
⊢ (⊤
→ (𝑥 ∈ (0[,]π)
↦ ((𝑥 ∈ ℂ
↦ -(cos‘𝑥))‘𝑥)) ∈ ((0[,]π)–cn→ℂ)) |
97 | 96 | mptru 1546 |
. . . . . . . 8
⊢ (𝑥 ∈ (0[,]π) ↦
((𝑥 ∈ ℂ ↦
-(cos‘𝑥))‘𝑥)) ∈
((0[,]π)–cn→ℂ) |
98 | 90, 97 | eqeltri 2835 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,]π) ↦
-(cos‘𝑥)) ∈
((0[,]π)–cn→ℂ) |
99 | 5, 98 | eqeltri 2835 |
. . . . . 6
⊢ 𝐶 ∈ ((0[,]π)–cn→ℂ) |
100 | 99 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝐶 ∈
((0[,]π)–cn→ℂ)) |
101 | 60, 61, 64, 70, 84, 100 | ftc2 25208 |
. . . 4
⊢ (⊤
→ ∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0))) |
102 | 101 | mptru 1546 |
. . 3
⊢
∫(0(,)π)((ℝ D 𝐶)‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)) |
103 | 59, 102 | eqtr3i 2768 |
. 2
⊢
∫(0(,)π)(sin‘𝑥) d𝑥 = ((𝐶‘π) − (𝐶‘0)) |
104 | | 0xr 11022 |
. . . . 5
⊢ 0 ∈
ℝ* |
105 | 10 | rexri 11033 |
. . . . 5
⊢ π
∈ ℝ* |
106 | | ubicc2 13197 |
. . . . 5
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤
π) → π ∈ (0[,]π)) |
107 | 104, 105,
63, 106 | mp3an 1460 |
. . . 4
⊢ π
∈ (0[,]π) |
108 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑡 = π → (cos‘𝑡) =
(cos‘π)) |
109 | | cospi 25629 |
. . . . . . . 8
⊢
(cos‘π) = -1 |
110 | 108, 109 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑡 = π → (cos‘𝑡) = -1) |
111 | 110 | negeqd 11215 |
. . . . . 6
⊢ (𝑡 = π → -(cos‘𝑡) = --1) |
112 | | ax-1cn 10929 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
113 | 112 | a1i 11 |
. . . . . . 7
⊢ (𝑡 = π → 1 ∈
ℂ) |
114 | 113 | negnegd 11323 |
. . . . . 6
⊢ (𝑡 = π → --1 =
1) |
115 | 111, 114 | eqtrd 2778 |
. . . . 5
⊢ (𝑡 = π → -(cos‘𝑡) = 1) |
116 | | 1ex 10971 |
. . . . 5
⊢ 1 ∈
V |
117 | 115, 1, 116 | fvmpt 6875 |
. . . 4
⊢ (π
∈ (0[,]π) → (𝐶‘π) = 1) |
118 | 107, 117 | ax-mp 5 |
. . 3
⊢ (𝐶‘π) =
1 |
119 | | lbicc2 13196 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤
π) → 0 ∈ (0[,]π)) |
120 | 104, 105,
63, 119 | mp3an 1460 |
. . . . 5
⊢ 0 ∈
(0[,]π) |
121 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = 0 → (cos‘𝑡) =
(cos‘0)) |
122 | 121 | negeqd 11215 |
. . . . . 6
⊢ (𝑡 = 0 → -(cos‘𝑡) =
-(cos‘0)) |
123 | | negex 11219 |
. . . . . 6
⊢
-(cos‘0) ∈ V |
124 | 122, 1, 123 | fvmpt 6875 |
. . . . 5
⊢ (0 ∈
(0[,]π) → (𝐶‘0) = -(cos‘0)) |
125 | 120, 124 | ax-mp 5 |
. . . 4
⊢ (𝐶‘0) =
-(cos‘0) |
126 | | cos0 15859 |
. . . . 5
⊢
(cos‘0) = 1 |
127 | 126 | negeqi 11214 |
. . . 4
⊢
-(cos‘0) = -1 |
128 | 125, 127 | eqtri 2766 |
. . 3
⊢ (𝐶‘0) = -1 |
129 | 118, 128 | oveq12i 7287 |
. 2
⊢ ((𝐶‘π) − (𝐶‘0)) = (1 −
-1) |
130 | 112, 112 | subnegi 11300 |
. . 3
⊢ (1
− -1) = (1 + 1) |
131 | | 1p1e2 12098 |
. . 3
⊢ (1 + 1) =
2 |
132 | 130, 131 | eqtri 2766 |
. 2
⊢ (1
− -1) = 2 |
133 | 103, 129,
132 | 3eqtri 2770 |
1
⊢
∫(0(,)π)(sin‘𝑥) d𝑥 = 2 |