| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzcmnss | Structured version Visualization version GIF version | ||
| Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.) |
| Ref | Expression |
|---|---|
| cntzcmnss.b | ⊢ 𝐵 = (Base‘𝐺) |
| cntzcmnss.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| Ref | Expression |
|---|---|
| cntzcmnss | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmnss.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cntzcmnss.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 3 | 1, 2 | cntzcmn 19752 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
| 4 | sseq2 3956 | . . . . 5 ⊢ (𝐵 = (𝑍‘𝑆) → (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (𝑍‘𝑆))) | |
| 5 | 4 | eqcoms 2739 | . . . 4 ⊢ ((𝑍‘𝑆) = 𝐵 → (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (𝑍‘𝑆))) |
| 6 | 5 | biimpd 229 | . . 3 ⊢ ((𝑍‘𝑆) = 𝐵 → (𝑆 ⊆ 𝐵 → 𝑆 ⊆ (𝑍‘𝑆))) |
| 7 | 6 | adantld 490 | . 2 ⊢ ((𝑍‘𝑆) = 𝐵 → ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆))) |
| 8 | 3, 7 | mpcom 38 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 Basecbs 17120 Cntzccntz 19227 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-cntz 19229 df-cmn 19694 |
| This theorem is referenced by: smadiadetlem3lem2 22582 |
| Copyright terms: Public domain | W3C validator |