MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnss Structured version   Visualization version   GIF version

Theorem cntzcmnss 19883
Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.)
Hypotheses
Ref Expression
cntzcmnss.b 𝐵 = (Base‘𝐺)
cntzcmnss.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzcmnss ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝑆 ⊆ (𝑍𝑆))

Proof of Theorem cntzcmnss
StepHypRef Expression
1 cntzcmnss.b . . 3 𝐵 = (Base‘𝐺)
2 cntzcmnss.z . . 3 𝑍 = (Cntz‘𝐺)
31, 2cntzcmn 19882 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)
4 sseq2 4035 . . . . 5 (𝐵 = (𝑍𝑆) → (𝑆𝐵𝑆 ⊆ (𝑍𝑆)))
54eqcoms 2748 . . . 4 ((𝑍𝑆) = 𝐵 → (𝑆𝐵𝑆 ⊆ (𝑍𝑆)))
65biimpd 229 . . 3 ((𝑍𝑆) = 𝐵 → (𝑆𝐵𝑆 ⊆ (𝑍𝑆)))
76adantld 490 . 2 ((𝑍𝑆) = 𝐵 → ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝑆 ⊆ (𝑍𝑆)))
83, 7mpcom 38 1 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝑆 ⊆ (𝑍𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  cfv 6573  Basecbs 17258  Cntzccntz 19355  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-cntz 19357  df-cmn 19824
This theorem is referenced by:  smadiadetlem3lem2  22694
  Copyright terms: Public domain W3C validator