MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnss Structured version   Visualization version   GIF version

Theorem cntzcmnss 18954
Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.)
Hypotheses
Ref Expression
cntzcmnss.b 𝐵 = (Base‘𝐺)
cntzcmnss.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
cntzcmnss ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝑆 ⊆ (𝑍𝑆))

Proof of Theorem cntzcmnss
StepHypRef Expression
1 cntzcmnss.b . . 3 𝐵 = (Base‘𝐺)
2 cntzcmnss.z . . 3 𝑍 = (Cntz‘𝐺)
31, 2cntzcmn 18953 . 2 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → (𝑍𝑆) = 𝐵)
4 sseq2 3941 . . . . 5 (𝐵 = (𝑍𝑆) → (𝑆𝐵𝑆 ⊆ (𝑍𝑆)))
54eqcoms 2806 . . . 4 ((𝑍𝑆) = 𝐵 → (𝑆𝐵𝑆 ⊆ (𝑍𝑆)))
65biimpd 232 . . 3 ((𝑍𝑆) = 𝐵 → (𝑆𝐵𝑆 ⊆ (𝑍𝑆)))
76adantld 494 . 2 ((𝑍𝑆) = 𝐵 → ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝑆 ⊆ (𝑍𝑆)))
83, 7mpcom 38 1 ((𝐺 ∈ CMnd ∧ 𝑆𝐵) → 𝑆 ⊆ (𝑍𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881  cfv 6324  Basecbs 16475  Cntzccntz 18437  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-cntz 18439  df-cmn 18900
This theorem is referenced by:  smadiadetlem3lem2  21272
  Copyright terms: Public domain W3C validator