![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzcmnss | Structured version Visualization version GIF version |
Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019.) |
Ref | Expression |
---|---|
cntzcmnss.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmnss.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
cntzcmnss | ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnss.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cntzcmnss.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
3 | 1, 2 | cntzcmn 18708 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) = 𝐵) |
4 | sseq2 3879 | . . . . 5 ⊢ (𝐵 = (𝑍‘𝑆) → (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (𝑍‘𝑆))) | |
5 | 4 | eqcoms 2780 | . . . 4 ⊢ ((𝑍‘𝑆) = 𝐵 → (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (𝑍‘𝑆))) |
6 | 5 | biimpd 221 | . . 3 ⊢ ((𝑍‘𝑆) = 𝐵 → (𝑆 ⊆ 𝐵 → 𝑆 ⊆ (𝑍‘𝑆))) |
7 | 6 | adantld 483 | . 2 ⊢ ((𝑍‘𝑆) = 𝐵 → ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆))) |
8 | 3, 7 | mpcom 38 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ (𝑍‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ⊆ wss 3825 ‘cfv 6182 Basecbs 16329 Cntzccntz 18206 CMndccmn 18656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-cntz 18208 df-cmn 18658 |
This theorem is referenced by: smadiadetlem3lem2 20970 |
Copyright terms: Public domain | W3C validator |