![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smadiadetlem3lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for smadiadetlem3 22600. (Contributed by AV, 12-Jan-2019.) |
Ref | Expression |
---|---|
marep01ma.a | β’ π΄ = (π Mat π ) |
marep01ma.b | β’ π΅ = (Baseβπ΄) |
marep01ma.r | β’ π β CRing |
marep01ma.0 | β’ 0 = (0gβπ ) |
marep01ma.1 | β’ 1 = (1rβπ ) |
smadiadetlem.p | β’ π = (Baseβ(SymGrpβπ)) |
smadiadetlem.g | β’ πΊ = (mulGrpβπ ) |
madetminlem.y | β’ π = (β€RHomβπ ) |
madetminlem.s | β’ π = (pmSgnβπ) |
madetminlem.t | β’ Β· = (.rβπ ) |
smadiadetlem.w | β’ π = (Baseβ(SymGrpβ(π β {πΎ}))) |
smadiadetlem.z | β’ π = (pmSgnβ(π β {πΎ})) |
Ref | Expression |
---|---|
smadiadetlem3lem2 | β’ ((π β π΅ β§ πΎ β π) β ran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) β ((Cntzβπ )βran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.r | . . 3 β’ π β CRing | |
2 | crngring 20189 | . . 3 β’ (π β CRing β π β Ring) | |
3 | ringcmn 20222 | . . 3 β’ (π β Ring β π β CMnd) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ π β CMnd |
5 | marep01ma.a | . . . . 5 β’ π΄ = (π Mat π ) | |
6 | marep01ma.b | . . . . 5 β’ π΅ = (Baseβπ΄) | |
7 | marep01ma.0 | . . . . 5 β’ 0 = (0gβπ ) | |
8 | marep01ma.1 | . . . . 5 β’ 1 = (1rβπ ) | |
9 | smadiadetlem.p | . . . . 5 β’ π = (Baseβ(SymGrpβπ)) | |
10 | smadiadetlem.g | . . . . 5 β’ πΊ = (mulGrpβπ ) | |
11 | madetminlem.y | . . . . 5 β’ π = (β€RHomβπ ) | |
12 | madetminlem.s | . . . . 5 β’ π = (pmSgnβπ) | |
13 | madetminlem.t | . . . . 5 β’ Β· = (.rβπ ) | |
14 | smadiadetlem.w | . . . . 5 β’ π = (Baseβ(SymGrpβ(π β {πΎ}))) | |
15 | smadiadetlem.z | . . . . 5 β’ π = (pmSgnβ(π β {πΎ})) | |
16 | 5, 6, 1, 7, 8, 9, 10, 11, 12, 13, 14, 15 | smadiadetlem3lem0 22597 | . . . 4 β’ (((π β π΅ β§ πΎ β π) β§ π β π) β (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ))))) β (Baseβπ )) |
17 | 16 | ralrimiva 3136 | . . 3 β’ ((π β π΅ β§ πΎ β π) β βπ β π (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ))))) β (Baseβπ )) |
18 | eqid 2725 | . . . 4 β’ (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) = (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) | |
19 | 18 | rnmptss 7130 | . . 3 β’ (βπ β π (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ))))) β (Baseβπ ) β ran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) β (Baseβπ )) |
20 | 17, 19 | syl 17 | . 2 β’ ((π β π΅ β§ πΎ β π) β ran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) β (Baseβπ )) |
21 | eqid 2725 | . . 3 β’ (Baseβπ ) = (Baseβπ ) | |
22 | eqid 2725 | . . 3 β’ (Cntzβπ ) = (Cntzβπ ) | |
23 | 21, 22 | cntzcmnss 19800 | . 2 β’ ((π β CMnd β§ ran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) β (Baseβπ )) β ran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) β ((Cntzβπ )βran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))))) |
24 | 4, 20, 23 | sylancr 585 | 1 β’ ((π β π΅ β§ πΎ β π) β ran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))) β ((Cntzβπ )βran (π β π β¦ (((π β π)βπ)(.rβπ )(πΊ Ξ£g (π β (π β {πΎ}) β¦ (π(π β (π β {πΎ}), π β (π β {πΎ}) β¦ (πππ))(πβπ)))))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 β cdif 3942 β wss 3945 {csn 4629 β¦ cmpt 5231 ran crn 5678 β ccom 5681 βcfv 6547 (class class class)co 7417 β cmpo 7419 Basecbs 17179 .rcmulr 17233 0gc0g 17420 Ξ£g cgsu 17421 Cntzccntz 19270 SymGrpcsymg 19325 pmSgncpsgn 19448 CMndccmn 19739 mulGrpcmgp 20078 1rcur 20125 Ringcrg 20177 CRingccrg 20178 β€RHomczrh 21429 Mat cmat 22337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-supp 8164 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-xnn0 12575 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-word 14497 df-lsw 14545 df-concat 14553 df-s1 14578 df-substr 14623 df-pfx 14653 df-splice 14732 df-reverse 14741 df-s2 14831 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-0g 17422 df-gsum 17423 df-prds 17428 df-pws 17430 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-submnd 18740 df-efmnd 18825 df-grp 18897 df-minusg 18898 df-mulg 19028 df-subg 19082 df-ghm 19172 df-gim 19217 df-cntz 19272 df-oppg 19301 df-symg 19326 df-pmtr 19401 df-psgn 19450 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-cring 20180 df-rhm 20415 df-subrng 20487 df-subrg 20512 df-sra 21062 df-rgmod 21063 df-cnfld 21284 df-zring 21377 df-zrh 21433 df-dsmm 21670 df-frlm 21685 df-mat 22338 |
This theorem is referenced by: smadiadetlem3 22600 |
Copyright terms: Public domain | W3C validator |